DaN 2426
RADC-TR-81:105

Final Techqicul},:ﬁ_'er{ort .
June 1981 - '

SPECIFICATION TOOLS ENVIRONMENT -
STUDY | -

TRW Defense and Space Systems Group

L. Baker

M. R. Nixon
J. T. Lawson D. A. Richard
R. P. Loshbough R, A. Vossler

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command |
Griffiss Air Force Base, New York 13441

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-105 has been reviewed and is approved for publication.

e Bl

WILLIAM E. RZEPKA
Project Engineer

APPROVED: /..;"_‘/ . 5
C[/ét'L / 4 4 &1?/7114,(/‘/4,\

" ALAN R. BARNUM .
Assistant Chief
Information Sciences Division

FOR THE COMMANDER:

JOHN P. HUSS
Acting Chief, Plans Office

‘If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organizationm,
please notify RADC.(ISIE) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list. '

t

Do not return this copy. Retain or destroy.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dals Enlered)

READ INSTRUCTIONS

REPORT’DOCUMENTATTON PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER

RADC-TR-81-105

\2 GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT & PERIOD COVERED

4. TITLE (and Subtitle) ‘
SPECIFICATION TOOLS ENVIRONMENT STUDY Final Technical Report
Nov 79 - Dec 80

a

DAN 2426 |

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

L. Baker, J. T. Lawson, R. P. Loshbough, F30602-80-C-0026
M. R. Nixon, D. A. Richard, R. A. Vossler

AT AME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
9. PERFORMING ORGANIZ ION N AM ARBA & WORK UNIT NUMBERS

TRW Defense and Space Systems Group 62702F
7702 Governors Drive West

Huntsville AL 35805 55812201

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE -~
Rome Air Development Center (ISIE) ' ‘1Jiﬁin%§£AGH
Griffiss AFB NY 13441 ' . 158

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)

Same o UNCLASSIFIED

15a, DECL ASSI FICAT!ON/DOWNGRAD)NG

/E HEDU

16. DISTRIBUTION STATEMENT (of this Report)

. Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report).

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: William E._Rzepké (ISIE)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Specification Tools
ARPANET Hosts
REVS

PERCAM
AUTOIDEF

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

This report documents results of a study ‘to determine an appropriate
hardware/software/communication environment for three specification
tools: REVS, PERCAM, and AUTOIDEF. Host systems currently on the
ARPANET and alternate high performance midicomputers were ‘evaluated
against functional requirements for the STE. The feasibility of con-
verting REVS, now coded in Pascal, into ADA, JOVIAL J73, FORTRAN or

COBOL was also assessed.

DD , 525“‘;1 1473 ED|TION. oF 1 NOV 65 IS OBSOLETE‘ UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Ty

UNCLASSIFIED

SECURITY CLASSIFICATION OF Tu'c PAGE(When Data Entered)

TABLE OF CONTENTS

Section - - Title

1.0 EXECUTIVE SUMMARY . + .+ .+ o o o IR

1.1 INTRODUCTION. AND BACKGROUND
1.2 OBJECTIVES AND SCOPE« .«
1.3 STUDY CONCLUSIONS AND RECOMMENDATIONS.
1.4 ORGANIZATION OF THIS REPORT. e e e e e e

2.0 - THE TOOLS AND THEIR4$OFTHARE ENVIRONMENT.

2.1 METHODS OF INVESTIGATION: TASK 1.
2.2 RSL/REVS oo v o o o o oo e e e e e e

2.2.1 Requirements Statement Language (RSL)
2.2.2 Requirements Engineering and Va]1dat1on

System (REVS)
2.2.3 Major Components of REVS and Its Support

Software. o .. . oo oL, e e e
2.2.4 REVS Job Control. i e e
2.2.5 Current REVS Installations. ce e e e
2.2.6 REVS Software Environment Requirements.

2.3 PERFORMANCE- AND CONFIGURATION ANALYSIS MODEL (PERCAM). .

2.3.1 Event Logic Trees
2.3.2 PERCAM Software e e e e e
2.3.3 Current Installations
2.3.4 PERCAM Software Environment Requ1rements

2.4 AUTOIDEF*.o . .. e e e e e

2.4.1 AUTOIDEF Software S S
2.4.2 Current Installations L.
2.4.3 AUTOIDEF Software Environment Requ1rements

2.5 GENERAL SOFTWARE ENVIRONMENT REQUIREMENTS. e e

'2.5.1 Source Library Control Requirements EEEEEER R
2.5.2 Data Entry Requirements e
2.5.3 On-Line Response Time Support
-2.5.4 Communications Support. _

3.0 HARDWARE RESOURCE REQUIREMENTS. e
3.1 REVS RESOURCE REQUIREMENTS L. Ce e

3.1. CPU Speed e e e e e e e e e e e
Primary Storage e e
Mass Storage. e e e e e e [
REVS Interactive Color Graph1cs Requirements. .
Plotter Hardware. Cete e
Card Reader/Alphanumeric CRT Terminals.

Wwwww
D et ot e -
SO W —

Section

4.0
5.0

6.0

3.2

3.3

3.4

- TOOL

4.1
4.2

3.1
3.1
3.1
3.1

TABLE OF CONTENTS (Continued)

Tape Unit-. 0.

7

.8 Line Printer. e e e e e e e e e
.9 External Communications e e e e e
.10 Internal I/0 Transfer

PERCAM RESOURCE REQUIREMENTS

3 2.

wwww
l\)l\)l\)l\)

3 2.

U‘I-hwl\)

1 CPU Speed e e e e . L.
Primary Memory. e e ..
Mass Storage.o oL
Graphics Hardware
Plotter Hardware. e e e e
6 . Card Reader/Tape Unit/Line Printer. . .".

AUTOIDEF RESOURCE REQUIREMENTS+

3.3.

wwwww
wwwww

STE

O\U‘I-&wl\)

1 CPU Speed o v v v o oLl
Primary Memory. e e e e e e e
Mass Storage. o 00000 .
Graphics Hardware, . e

" Plotter Hardware.+«
Card Reader/Tape Un1t/L1ne Prlnter e e e e e

HARDWARE SELECTION CONSIDERATIONS.

UTILIZATION PROFILES e e e e e e e e

REVS UTILIZATION . & » v v v o oo e et IR
PERCAM UTILIZATION . . + &« « » » « . . . e .

4.3 AUTOIDEF UTILIZATION B

STE REQUIREMENTS SUMMARY. I [

SOFTWARE ENVIRONMENT REQUIREMENTS SUMMARY.
5.2 HARDWARE ENVIRONMENT SUMMARY Ce e e
5.3 STE INTEGRATION ISSUES o oo o .

5.1

SURVEY OF ARPANET SYSTEM HOSTS.
METHODS OF INVESTIGATION: TASK 2. v v v e e e e

6.1

6.2 CDC ARPANET HOSTS. PR e e e .

6.2
6.2

.1 Hardware/Software Functional Requ1rements e
.2 CDC Host Job Scheduling Considerations.
6.2.
6.2.

3 CDC Host Utilization Considerations
4 CDC Host Job Billing Considerations

ii

Section

7.0

8.0

TABLE OF CONTENTS (Continued)

Title

6.3 NON-CDC ARPANET HOSTS PARTIALLY EVALUATED BY TRW . . .

6.3.1 Hardware/Software Functional Requirements . . .
6.3.2 WNon-CDC Host Processor Slowdown Ratios.
6.3.3 Host Utilization Considerations
6.3.4 Host Job Scheduling and Billing Considerations.
6.3.5 Job Scheduling Parameter Considerations at ANL.

HONEYWELL 6180 HOSTS « . . « . v v
REVS RUN COSTS AT NADC« o o .
ARPANET HOST CONCLUSIONS«

Oy O
o O

SURVEY OF ALTERNATE STE HOSTS - L .

7.1 METHODS OF INVESTIGATION: TASK 3... (.
7.2 COMPARATIVE DATA ON ALTERNATE STE HOST MACHINES. . . .
7.3 MIDICOMPUTER HOST SELECTION.
7.4 STE COLOR GRAPHICS TERMINALS

'STE SECURITY' CONSIDERATIONS

. 8.1 GENERAL SECURITY CONSIDERATIONS. e e e e

9.0

10.0
APPENDIX A

8.2 STE IMPLICATIONS [

REVS IMPLEMENTATION LANGUAGE'CONVERSION.EVALUATION

9.1 CANDIDATE LANGUAGE SUMMARY
9.2 CONVERSION IMPACT UPON. EXISTING REVS FEATURES.

REVS Program Architectures.
Dynamic Storage Management.
Recursive Subprogram Calls.
Structured Programming Techniques
Data Structures e e e e e
Automatic Consistency Checking. e
Input/Qutput: 0oL
Automatic Generation of RSL Translator.
Automatic Generation of Simulator Program . . .
.10 Automatic Generation of Simulation Post-

O WO O WO W WO W W
N RN R R RN NN -
—OO~NO T WN —

Processor e e e e e e e ‘

9.3 CONVERSION COST/SCHEDULE
9.4 CONVERSION IMPACT UPON LIFE-CYCLE MAINFENANCE
9.5 LANGUAGE CONVERSION CONCLUSIONS. e e

REFERENCES e .

iii

Figuré

2-2
2-3

2-5
2-6

2-8
4-1
4-2
-3
4-4

191

- LIST OF ILLUSTRATIONS

REVS Functiona1 OrganizatiOh. e e e e e e T Vi
CREVS Job SEQUENCE « + + v v e e e e e e 19
PERCAM Multi-Simulator Philosophy e e e e 33
The PERCAM Aha]ysié Pfoceés ' ; 34
_ELT Example e e e .'; S e 36
User.and Simulator Data Inpﬁf'Summary C e L e e e 41

. Example- IDEF Diaqramp_. “ e e e e e . .:.'.‘ 45
,AUTOIDEF System-Overview. e e e e e e -.'. 1
Seament of REVS Projecf Run History . . .'; e 67
REVS‘Runs/Day Freqdencies . ; C e ;.Q e ..; ... 68
Intervals Between REVS Runs ;‘ -. | 69
Time of Day of REVS Runs.« . .« o .. 70
Simulator Program Overview: oo ... 122

iv

LIST OF TABLES

Title

Current REVS- Installations. .

Installation Phase Mass Storage Files for REVS Software . . .

Prbduction Phase Mass Storage Files for REVS Software .
REVS Installation Runs. .

Examp]e PERCAM Study Number One

CDC ARPANET Host Evaluation .- . .-. . . .

Input Queue Classes (C Parameter)

Age Computation for Input Queue (A Parameter) c e ..

PERCAM Study Number One Cost Estimates (LBL).

- PERCAM Study Number Two Cost Estimates (LBL).

Non-CDC ARPANET Host Evaluation . . .

PERCAM Study Number One Cost Estimates (ANL).

PERCAM Sfudy Number Two Cost Estimates (ANL).

NADC REVS COSES . « v » v v v v v e e o . e

Candidate Midicomputer Hosts.

~Candidate Language Comparisons. e e

Page
26
56
57
66

1.0 EXECUTIVE SUMMARY

1.1 INTRODUCTION AND BACKGROUND

The production of high-quality specifications for systems and software
- is- a Tong-standing and well recognized problem area. . Traditional forms of
specification, usually in free-form English text, have persistently been
plagued with deficiencies such as incompleteness, inconsistency, ambiguity
and other errors. Verification of such specifications is usually manual,
hence, itself error-prone and often incomplete.

To address aspects of this problem area, several promising automated
tools have been developed in recent years. Three particular tools of interest
to RADC are RSL/REVS [1,2], PERCAM [3,4], and AUTOIDEF [5,6,7]. A summary
- description of each tool follows:

® RSL/REVS. The Requirements Statement Language (RSL) and the
"~ Requirements Engineering and Validation System (REVS) are com-

ponents of the Software Requirements Engineering Methodology
(SREM) developed by TRW for the U.S. Army Ballistic Missile
Defense Advanced Technology Center (BMDATC). The REVS software
provides capabilities to translate RSL requirements statements,
maintain a requirements data base, analyze the relational data
base for desirable properties or errors, extract particular sub-
sets of the data base under user control, and generate executable
simulations constrained by the requirements statements. REVS
consists of a set of Pascal programs, a Data Base Control System
written in FORTRAN, and a set of support ut111t1es including the
TRW Pascal Compiler Writing System.

e PERCAM. This tool, developed by TRW for the rapid construction
"~ and execution of modular simulations, was originally used in the
simulation of large-scale air defense attacker/defender scenarios.
" Subsequently, PERCAM has been used in preliminary performance
studies for a number of different systems where resource con-
straints are a significant issue.

e AUTOIDEF. This large FORTRAN software package is being developed
by Boeing Computer Services under contract to SofTech, Inc., for
support of the Air Force ICAM program. This tool automates IDEF
diagrams, a specialized form of the diagrams used by SofTech in
their Structured Analysis and Design Technique (SADT). Build 1,
which became operational on 10 August 1979, provides the capabil-
ity. to create and store IDEF diagrams. Build 2, yet to be com-
pleted, provides consistency checking capability.

These tools were developed at different times, for different purposes on
various types of Control Data Corporation (CDC) computers. In order to fur-
ther evaluate, improve and integrate these tools, and eventually make the
products widely available within the Air Force, a compatible hardware/software/
communication environment is needed. This environment has been named the
Specification Tools Environment (STE). The study reported in these pages is
concerned with the requirements upon the STE and candidate ways of 1mp1ement1ng
those requ1rements :

1.2 OBJECTIVES AND SCOPE

The objective of the STE Study was to determine hardware, software, and
communication configurations for implementation of an environment capable of
supporting the integration and development of automated tools for the analysis
of system and software specifications. Existing environment implementations
by industry and Government sources as well as new proposed 1mp1ementat1ons
were cons1dered :

The objective was accomplished through four study tasks as fo]]ows
| é | Task 1 . Define STE Functional Requirements |
e Task 2: Determine Adequate ARPANET Hosts
o Task 3: Survey Alternate STE.Hdsts
o Task 4: Evaluate REVS Language Conversion.

The first task was aimed at determining the hardware, software, and
communication requirements imposed on the environment by the tools. The
second task evaluated the suitability of existing ARPANET systems using the
requirements developed in the first task. -The third task evaluated standard
computer industry hardware/software configurations for possible use in a
dedicated environment. The fourth task assessed the feasibility and apbproxi-
mate-cost to rewrite the Requirements Statement Language/Requirements
Engineering Validation System (RSL/REVS) into some other more widely avail-
able language. :

The last task was included because RSL/REVS is written in the Pascal
Tlanguage, not one of the approved Air Force standard higher-order languages.
Not only is REVS in Pascal, it fully utilizes all of the features of the
language.- When ‘the STE Study was initiated in 1979, few available Pascal
compilers fully implemented the language. ‘In the past year the situation
has dramatically improved as a number of powerful Pasca] comp11ers have been
introduced on a wide range of mach1nes

1.3 STUDY CONCLUSIONS AND RECOMMENDATIONS

There are three nodes on the ARPANET using CDC computer systems that
have immediate capability to provide the STE. These are Brookhaven National
Labs (BNL), Lawrence Berkeley Labs (LBL), and the Naval Air Development
Center (NADC). Two of the STE tools, REVS and PERCAM, are already installed
at NADC. Installation of REVS at one of the other nodes would require one-
half to two man-years of technical effort, depending upon details of the host
operating system. AUTOIDEF would have to be 1nsta11ed at any of the nodes.

0f the non-CDC ARPANET nodes, Argonne National Labs (ANL) and University
of California at Los Angeles (UCLA-CCN), provide the best capabilities. Both
nodes have large IBM 3033 mainframes. Using the new IBM Pascal compiler, it
is believed that REVS could be installed on an IBM machine with about two
man-years of technical effort.

Two Univac systems on the ARPANET -have the processing power to provide
the STE, but there are still deficiencies in the features of existing Pascal
compilers for Univac machines. A DEC VAX 11/780 at the Naval Underwater Sys-
tems Center (NUSC) could provide the STE if main memory was upgraded to two
megabytes from the present one megabyte. (REVS is being installed on the VAX
under contract to the Ballistic Missile Defense Advanced Techno1ogy Center
(BMDATC) 1in Huntsville, Alabama.)

Cost and availability 1nformation for ARPANET nodes was fragmentary and
difficult tb acquire. While sufficient information was provided by ANL and
LBL to derive cost estimates for REVS runs, and these estimates were comparable
with each other, they were significantly lTower than results derived from a
cost estimating relationship based on actual REVS runs at NADC. Comparative
benchmark runs at candidate nodes would be necessary to verify real costs.
There are three potential disadvantages of using an existing ARPANET node to
host the STE: 1) possible unavailability of the node when needed; 2) inabi-
lity to tailor the node configuration to STE needs; and 3) inability to pro-
cess classified data without expensive add-on equipment.

To promote widespread.technology transfer of STE tools throughout the
Air Force, there is great merit to hosting the tools on a popular machine that
is affordable, in terms of cost, to a wide spectrum of users. Our survey of
alternate hosts indicates that the DEC VAX 11/780 is currently the best can-
didate to further this objective. OQur survey of color graphics terminals
resulted in selection of the Tektronix 4027 terminal for STE support.

We assessed the effort required to convert REVS to one of the standard
Tanguages, JOVIAL J73, FORTRAN, or COBOL, or to the forthcoming DoD standard
Tanguage, ADA. We concluded that conversion to.ADA would provide the greatest
future benefit at least cost, followed by JOVIAL J73 in second place. Conver-
sion to FORTRAN or COBOL would be costly, and since these languages are be-
coming obsolescent in the future, such a conversion would be of minimal benefit.
With the recent introduction of a number of good Pascal compilers and the
exploding popularity of the language, we recommend that the Pascal implementa-
tion of REVS be maintained until sufficient reliable ADA compilers are avail- .
able and the future of ADA and JOVIAL J73 becomes more clear.

3

1.4 ORGANIZATION OF THIS REPORT

Thé remainder of this report documents methods of investigation and spe-
cific results for the four tasks of the STE Study. Task 1 results are reported
in Sections 2 to 5. Task 2 results are reported in Section 6. Sections 7 and 8
address the results of Task 3, while Section 9 is devoted to Task 4. Section
10 Tists major references cited in the report.

Section 2 is devoted to descriptions of the tools and their software
environment requirements. Each of these tools is addressed separately. Para-
graph 2.5 deals with utility software needed for the STE independent of the
part1cu1ar tools.

Section 3 is devoted to hardware resources necessary to support each
tool. Where a tool has been developed to interface with specific hardware,
we identify the particular item and its main characteristics. Discussion of
substitute equipment and necessary tool modifications is inserted when appro-
pr1ate Quantitative estimates are also made for memory and storage sizing.

Section 4 presents run time and workload estimates for each tool based
. upon current installations and observed usage patterns. This information was
-used to evaluate speed requirements for various candidate configurations and
operating policies. Section 5 concludes the results of Task 1 with a consoli-
dated summary of requirements for the STE, considering the combined needs
for REVS, PERCAM, and AUTOIDEF. Two integration issues are identified for
future cons1derat1on

Section 6 discusses results of a survey of candidate ARPANET hosts for
the STE. Although personnel from several ARPANET nodes readily cooperated to
provide their best information, we were surprised to find that reliable, cur-
rent information is generally not available. Even the ARPANET Network Informa-
tion Center (NIC) has not been able to accumulate accurate cost and workload data.

Section 7 summarizes the evaluation of alternate STE hosts of a type
capable of near-term connection to the ARPANET and suitable for use in a
dedicated STE mode. Since current ARPANET nodes include the common Tlarge
mainframes provided by all of the major computer vendors, our emphasis was
on investigating economical high performance "midicomputer" systems. Candi-
date color graphics terminals are also discussed.

Section 8 discusses the implications of operatihg the STE in a dedicated,
single-level security mode. The discussion assumes use of a vendor-supplied
commercial operating system.

Section .9 assesses the feasibility of converting the REVS tool, now coded
in Pascal, to one of the approved DoD higher order languages: ADA, JOVIAL J73,
_FORTRAN, or COBOL. The more modern languages, ADA and J73, were found to be
"more cost-effective candidates than the early Tanguages, FORTRAN and COBOL.

Section 10 lists references cited in the report, and Appendix A summarizes
information collected about the -individual ARPANET nodes discussed in Section 6.

2.0 THE TOOLS AND THEIR SOFTWARE ENVIRONMENT

This section, and the following Sections 3, 4, and 5, provide results of
Task 1 of the STE Study. The objective of Task 1 was to define the hardware/
software functional requirements imposed on the STE by the characteristics
of the three candidate STE tools: REVS, PERCAM and AUTOIDEF. The results of
Task 1 were used as inputs to Tasks 2, 3, and 4.

The first paragraph in this section describes the methods of investiga-
tion used to accomplish Task 1. The subsequent paragraphs in this section
present descriptions of each tool, specific concepts implemented in the tool,
and its major software components. After the introductory discussion about
each tool, its specific software requirements upon the STE are presented,
based upon current implementation and installations. The last paragraph in
the.section addresses utility support independent of the tools considered.

2.1 METHODS OF!INVESTIGATIONE TASK 1

Ourlapproach in conducting this study was to investigate the-requirements
of the STE with respect to software, hardware and communications. For each
of the tools, TRW first gathered information concerning the following:

Major source modules .

)

e Programming language(s)
® Job control mechanisms
0

Source inputs (e g., system data, test cases)
e Utilities. '

Each of the above areas was assessed to estabiish the requ1rements each of
the tools imposed on the STE. .

Next we examined the equipment currently used to host each tool. The cur-
rent installations and hardware used were originally defined. either by 1) spe-
cific customer requirements, or 2) -availability (the customer happened to have
specific equipment, but this was not mandatory to support the tool). Regard-
less of the original requirement, the current installations are the reference-
point from which the transfer of the tools to a different environment must be
assessed. Substantial departure from current features and assumptions may add
significant tool modification costs to adapt to a new environment.

- Third, we gathered current performance and workload data to approximate
the STE load to be serviced. These will be used to -assess various STE candi-
dates. We have avoided stating explicit run time requirements for the tools
because CPU speed alone is not a sufficient yardstick. Other factors such as
availability of non-dedicated hosts, time-sharing service policy and cost/
performance trade-offs will be major considerations in determining: adequate
configurations.

Finally, we examined the separate requirements for each tool, identified
the most severe requirements over the set of tools, and syntheSized a summary
set of requirements for the STE as a whole.

5

\
|

2.2 RSL/REVS

The Requirements Statement Language (RSL) and the automated Requirements
Engineering and Validation System (REVS) are two components .of the Software
Requirements Engineering Methodology (SREM) developed by TRW and delivered to
the U.S. Army Ballistic Missile Advanced Technology Center (BMDATC) in 1976 as
an increment in the BMDATC Software Development System (SDS). The third com-
ponent of SREM, the methodology proper, ‘directs the use of the language and
tools in the deve]opment of software requirements.

As a starting point in this paragraph, we will describe RSL and REVS in
sufficient detail to allow an understanding of the requirements upon the STE
that follow. Because the REVS user interface has been designed for simplic-
ity, it is difficult for the user to comprehend that what (to him) appears a
monolithic program is, in reality, an intricate multi-job execution stream of
a smstem of programs controlled by automated job stream manipulation within
REVS. This process is discussed in detail in 2.2.4 and explains why transfer
of REVS to a new env1ronment is not a straight-forward task.

|
2.2.1 Requ1rements Statement Languag;ﬁ(RSL)

'RSL is a machine-readable, English-Tike 1anguage for stat1ng software re-
quirements. The basic structure of RSL is very simple and is based on four
primitive language concepts: elements, attributes, relationships, and struc-
tures. : .

Elements

ETements in RSL correspond roughly to nouns in English. They are
those objects and ideas which the requirements analyst uses as build-
ing blocks- for his description of the system requirements. Each ele-
ment has a unique name and belongs to one of a number of classes
called element types. Some examples of standard element types in
-RSL are ALPHA (the class of functional. processing steps), DATA (the
class of conceptual pieces of data necessary in the system), and

R NET. (the class of process1ng flow spec1f1catjons)

Attr1butes

-Attr1butes are modifiers of e1ements somewhat in the manner of adjec-
tives in English; they formalize important properties of the elements.
Each attribute has associated with it a set of values which may be

" mnemonic names, numbers, or text strings. Each particular element
may have only one of these values for any attribute. An example of
an attribute is INITIAL VALUE which is applicable to elements of type
DATA. 1t has values which specify what the initial value for the

data item must be in the implemented software and for simulations.

| Relationships

The relationship (or relation) in RSL may be compared.with an English
verb More properly, it corresponds to the mathematical definitiqn

6

of a binary relation, a statement of an association of some type
between two elements. The RSL relationship is non-commutative; it
has a subject element and an object element which are distinct.
However, there exists a complementary relationship for each speci-
fied relationship which is the converse of that specified relation-
ship. ALPHA INPUTS DATA is one of the relationships in RSL; the
complementary relationship says that DATA is INPUT to an ALPHA.

© Structures

The final RSL primitive is the structure, the RSL representation of
the flow graph. Two distinct types of structures have been identi-
fied. The first.is the R NET (or SUBNET) structure. It identifies
the flow through the functional processing steps (ALPHAs) and is
thus used to specify the system response to various stimuli. The
second structure type is the VALIDATION PATH, which is-used to
specify performance of the system.

Through the use of these four primitive language concepts, a basic re-
quirements language is provided which includes concepts for specifying pro-
cessing flows, data processing actions, and timing and accuracy requirements.
In addition, ‘informative and descriptive material, and management-related
information may be specified. The concepts of this language consist of
twenty-orie element types, twenty-one attributes, twenty-three relationships,
and two types of structures. RSL can be extended to include additional con-
cepts by defining new element types, attributes, or relationships. This allows
the language to be tailored to the needs of a specific problem or project.

2.2.2 Requirements Eggineering'and Validation System (REVS)

The Requirements Engineering and Validation System (REVS) is an inte-
grated system of software which aids in the development, maintenance, valida-
tion, and documentation of software requirements. REVS is designed to allow
the requirements engineer to state and modify requirements information over a
period of time as the requirements are developed. The RSL statements that an
engineer inputs to REVS are analyzed, and a representation of the information
is put into a centralized data base. This data base is called the Abstract
System Semantic Model (ASSM) because it maintains information about the re-
quired data.processing system (RSL semantics) in an abstract, relational
model. Once entered into the ASSM, the requirements are available for subse-
quent refinement, extraction, and analysis by the REVS software.

. From a user point of view there are five major functional capabilities
which REVS provides:

e iProcessing of RSL.
e Interactive generation of Requirements Netwofks (R NETs).

e .Analysis of requirements ahd‘output of requirements in RSL
and/or in specially formatted reports.

@ Generation and execution of functional and analytic simulators
from functional requirements and models or algorithms, and the
generation and execution of simulation post-processors from
analytic performance requirements.

¢ Processing of extensions to RSL.

REVS and RSL allow the engineer to enter requirements into REVS as they
are developed, with REVS accumulating the information in the requirements data
base and checking for consistency and completeness as new data is entered.
Consequently, although the REVS capabilities may be applied in any order, in
general, the user will initially enter RSL and then request various analyses to
be performed by the RADX function. New entries will be made and analysis re-
peated until the requirements have been developed sufficiently for a simulation
tol be meaningful, and useful. At that time, a simulator and post-processor may
be generated. The simulator may then be executed numerous times and the data
recorded and analyzed. Based on the results, this sequence may be repeated,
starting with the modification of requirements already input to REVS or the .
addition of new ones. The sequence will also be repeated as system require-
ments change or new requirements are imposed. When the user is satisfied that
the requirements are correct, based upon the results of static and dynamic
analysis, REVS will prov1de outputs necessary to write a software requirements
specification.

"Each of the major capab111t1es identified above is allocated to a d1ffer-
ent functional component of REVS. The capabilities and the appropriate func-
tions are described briefly below.

2.2.2.1 Processing RSL

~ The analysis of RSL statements and the establishment of entries in the
ASSM corresponding to the meaning of the statements is performed by the RSL
translation function of REVS. The translation function also processes the
~modifications and deletions from the data base commanded by RSL statements
specifying changes to already- existing entries in the data base. For all
types of input processing, the RSL translation function references the ASSM
to do simple consistency checks on the input. This prevents disastrous er-
rors, such as the introduction of an element with the same name as a pre-
v1ous]y existing eTement, or an instance of a relationship which is tied to
an illegal type of e]ement Besides providing a measure of protection for
the data base, this type of checking catches (at an early stage) some of the
simple types of inconsistencies that are often found in requirements specifi-
cations, without restricting the order in wh1ch the user adds to or alters
the data base.

2.2.2.2 Interactive Generation of R-Nets

Graphics capabilities to interactively input, modify or display R NET,
SUBNET, and VALIDATION PATH structures are provided through the REVS Inter—
active R-Net Generation (RNETGEN) function. RNETGEN permits entry of struc-
tures and referenced elements in a manner parallel to the RSL translator and
thus provides an alternative to the RSL translator for the specification of
ﬁhe flow portion of the requirements. Using this function, the user may

8

develop (either automatically or under direct user control) a graphical repre-
sentation of a structure previously entered in RSL. Through the use of the
ASSM, the user may work with either the graphical or RSL language representa-
tion of a structure; they are completely interchangeable.

The Interactive R-Net Generation facility contains full editing canab111—
ties. The user may input a new structure or he may mod1fy one prev1ous1y
entered. At the conclusion of the editing session, the user may elect to
replace the old structure with the modified one. The editing functions pro-
vide means te position, connect, and delete nodes, to move them, to disconnect
them from other nodes and to enter or change their associated names and com-
mentary. The size of a structure is not limited by the screen; zoom-in, zoom-
out, and scroll functions are provided.

2.2.2.3 Analysis and Output of Requirements

The Requirements Analysis and Data Extraction (RADX) function provides
both static flow analysis capabilities and the capabilities of a generalized
extractor system to support both the checking for completeness. and consis-
tency in the requirements spec1f1cat1on and the development of requ1rements
documentation.

The static flow-analysis deals with data flow through the R NETs. The
analysis uses the R NET structure in much the same manner that data flow
analyzers for programming languages use the control flow of the program to
detect deficiencies in the flow of processing and data manipulation stated in
the requ1rements :

The generalized extractor system-allows the user to perform additional
analysis and to extract information from the ASSM. The user can subset the
elements in the ASSM based on some condition (or combination of conditions)
-and display the elements of the subset with any appended information he se-
‘lects. By combining -sets in various ways, he can detect the-absence or pre-
sence of data, trace references on the structures, and analyze inter-relation-
ships established in the ASSM. In analyzing user requests and extracting
information from the ASSM, the extractor system uses the definition of the
language concepts contained in the ASSM. . Thus, as RSL is extended, the ex-
tensions and their use in theé requirements are available for extraction.

2.2.2.4 Generation and Execution of Simulators and Post-Processors

The automatic Simulation Generation (SIMGEN) function in REVS takes the
ASSM representation of the requirements of a data processing system and
generates from it discrete event simulators of the DP system. These simula-
" tors are driven by externally generated stimuli (e.g., a weapon system model)
known as a System Environment and Threat Simulation (SETS). This driver pro-
gram models the threat, or situation, the system env1ronment, and the compo-
nents of a system externa1 to the data processing system. " Executable code
for the SETS must be developed by the user, as are the executable code seg-
ments for ALPHA's described next

‘ Two distinct types of simulators may be generated by REVS. The first
uses functional (BETA) models of the processing steps and may employ simplq-
fications to simulate the required processing. This type of simulation serves
as a means to validate the overall required flow of processing against higher

level system requirements.

The other type of simulator uses analytic (GAMMA) models (i.e., models
that use algorithms similar to those which will appear in the software to
perform complex computations). This type of simulation may be used to define
a set of algorithms -which have the desired accuracy and stability. Real-time
feasibility of a system using this algorithm set is not established for any
pmp1ementat1on, instead, the simulation provides an existence proof of an
analytic solution to the problem. Both types of simulations are used to

check dynam1c system interactions.

) Executable code segments representing the BETA and/or GAMMA mode11ng
|Tevels are developed by the user. These are stored in the ASSM as BETA and
GAMMA text attributes of the corresponding processing step (ALPHA).

The SIMGEN function transforms the ASSM representation of the require-
ments into simulation code in the Pascal programming language. The flow
structure of each R NET is used to develop a Pascal procedure whose control
flow implements that of the R NET structure. Each ALPHA name on the R NET
is translated into a call to a procedure consisting of the model or a1gor1thm
| (BETA or GAMMA) for the ALPHA. The models -or algorithms are written in Pascal.
.The data definitions and structure for the simulation are synthesized from the
requ1rements data elements and their relationships and attributes in the ASSM.

; By automatically generating simulators in this manner from the ASSM, the

| simulations are insured to match and trace to the requirements. New s1mu1a-

{ tors can be generated readily as requirements change; all changes are made to

/the requirements statements themselves, and are automatically reflected in
the next generation of the simulator.

For analytic simulations, SIMGEN also generates simulation post-proces-
sors based on the statement of performance requirements in the ASSM. Data
. collected from an analytic simulation can be evaluated using the corresponding
J post-processor to test that the set of algorithms meet the required accuracies.
|
I

Both REVS generated simulators and post-processors are accessed.for
execution through REVS functions; the Simulation Execution (SIMXQT) function
for-simulators, and the Simulation Data Analysis (SIMDA) function for simula-

tion post-processors.

2.2.2.5 Processing Extensions to RSL

An ASSM contains the RSL concepts used to express requirements as well
as the requirements. Extensions and modifications to the concepts are pro-
cessed by the RSL Extension translation (RSLXTND) function of REVS. The
RSLXTND function is actually performed by the same software as RSL translation
but is accessed separately to control extensions to the 1anguage through a
lock mechanism built into. the software.

10

2.2.2.6 REVS Organization

The above discussion has identified seven functions of REVS: RSL,
RNETGEN, RADX, SIMGEN, SIMXQT, SIMDA and RSLXTHND. As shownin Figure 2-1, these
functions are under the control of a higher level function, the REVS Execu-
tive. The Executive presents a unified interface between the user and the
different REVS functions.

2.2.3 Major Components of REVS and Its Support Software

Twelve major components, herein termed "source modules" are requiréd for
installation, execution, and maintenance of REVS. These vary in type from
systems of programs to control decks and system data files transparent to the
user. _

2.2.3.1 Pascal Language Source Modu]es

0 » REVS: The PascaT app]wcat1on software itself consists. of over
42,01 000 lines of code broken into more than 1100 procedures. To
our knowledge, it is the largest Pascal program yet built.

© Compiler Writing System Package (CWS): This software. package,

- adapted from a CWS developed by the University of Montreal, is
used for generating the RSL-translator within the REVS Pascal
program. It consists of the following programs and segments:

- SEMAGEN: This program pre-processes -the extended Backus-Naur
Form (BNF) of the RSL Language. As output, it generates
tables for processing by other programs in the CWS.

- LEXIGEN: This program produces the lexical analyses of the
generated compiler.

- COMPGEN: This program assembles all the generated compiler
pieces into the comp11er program.

- SYNTGEN: This program builds the tables used by the standard
syntax generator.

- PROGGEN: This program generates the minimum programs from
the syntactical structure of the input language.

- NOYALEX: This is the Pascal skeleton for the lexical phase
of the generated compiler. :

- NOYASYN: This is the Pascal skeleton for the syntactical
phase for the generated compiler.

- ERREURS: This is the Pascal skeleton for error keéoveny

@ Pascal Formatting Program: This progjram is-used to generate
consistent indentations, to re-position comment fields, and to
assure that the Pascal code is limited to the first: 72 print
columns, 1n order to insure uniformity.

1B

¢l

SRE78-092

REYS
EXZCUTIVE

i
-

et
e

4 4 4 ¢

X

\

\

\

| RSL EATERSION
TRASSLATICN

[

asL

TRANSLATION

REQUIREMENTS

ANALYSIS AND

OATA

CEXTRACTION

INTERACTIVE
RNET
GENEFATION

STMULATION -

GENZRATION

3.

4

ASSM
ACCESS

[

[

Figure 2-1 REVS Functional Organization

PQS
PROCES

T~
SOR
£

_—— e — .._j —_——— --jf-i —_— --]

|
|
f

PASCAL
COMPILER

LINKAGE

ECITOR

y]

SIMULATION ;::iLATZ°“
T

EXECUTION ANALYSIS

SIMULATION
« OAD MDDUL
PUST-
PRCCESSCR
0AD MODULE

RISF File: The Requirements-lndependent Source File (RISF)
contains Pascal code skeletons. The simulation generator of
REVS uses this file to build the simulator program.

2.2.3.2 FORTRAN Source Modules

Data Base Contro] System (DBCS) Package: This software package,
developed by the University of Michigan, contains the following
source sub-modules:

- The Data Base Control Systems (DBCS) Routines: These routines
are the heart of the data base system. The DBCS routines
actually handle ‘the I/0 for the data base.

- The Data Definition Language Analysis (DDLA) Program: This
program builds description tables and blocks the data areas
required by the DBCS routines from the Data Definition Lan-
guage (DDL) which describes the data base.

- The DBCS Initialization (DBIN) Program: ThisApfogram
- initializes a file for use in the data base. :

- DBCS Summary (DBSM) Program: This program producés a summary
report as- to the amount of data base in use.

CALCOMP Compatible Plot Routines:. These routines 1nterface with
the CALCOMP basic plot package ‘to draw ellipses, circles, rec-
tang1es, and polygons at sites where the equivalent CALCOMP
engineering drawing routines are not available.

2.2.3.3 Special Language Source Modules

These modules are special language inputs to the app11cat1oh software
and transparent to the host system, or are JOb control and command instruc-
tions native to the host system.

Data Definition Language (DBL) for the REVS RSL Data Base:
This source module describes the structure of the REVS/RSL data
base and is input to the DDLA program, described above.

Data Definition Language (DDL) for the REVS Simulation Data
Base: This source module describes the structure.of the REVS
Simulation data base and is used as input to the DDLA program.

RSL Integrated Language Description for the CWS: This source
module contains the information necessary for the CWS to generate
the RSL translator. This is an extended BNF description.

Segmented Overlay Commands (CDC- Dependent) These commands are
input to the CDC Segmented Loader in order to describe the
memory scheme to the loader. |

Job Control Lanquage Decks for Building and Running REVS (CDC-
Dependent): These control language decks are operating system
and site-dependent.

13

e RSL Test Cases: These RSL input files are used to test the
‘proper operation of REVS. Once REVS is installed, these tests
can be used as a baseline for performance tuning.

2.2.4 REVS Job Control

REVS is invoked as a series of programs through the use of the job con-
“trol statements of the operating system. This section illustrates job control
on the CDC 7600, although it must be recognized that such control is dependent
on- the host computer operating systems. The following programs must be avail-

able at any host site:

REVSPRE to initialize all files.
' REVSXQT to execute REVS.

"SIMBUlL to build the’ REVS- generated simulator and post-processor.
‘SIMRUN to execute a REVS-generated s1mu1ator
TgSTRUN to execute a REVS-generated post- processor.
SﬁMSAVE to save a REVS-generated simulator and post-processor.
SIMLOAD to réload a REVS-generated simulator and post-processor.

Fo]]Owing a ddscrfption of these programs immediately below, their implemen-
tation via job stream control cards will be discussed.

2.2.4.1 REVSPRE Program

The REVSPRE program provides for the acquisition of necessary files and
env1ronmenta1 conditioning for use of REVS on the CDC 7600. This program
acquires all files needed to run REVS and is used only once at the beginning

of a job deck: The files obtained are:

LOCAL FILE NAME - PERMANENT.FILE NAME

' TAPE2 : DBNUC
‘TAPE3 ' a DBT
TAPE]O . VVDB
TAPE]] | ~ VVDBT
DONNEES o DONNEES
RISF~—~ ©RISF
NESTER ~ NESTER
PASCAL PASCAL

14

' DESCRIPTION
Predefined nucleus data base.
Data base tab]es.

Empty post-processor data
base.

Post—processor data base
tables.. :

RSL translator input file.

SIMGEN input file used to
construct a simulation
program.

Utility program to reformat
Pascal source programs.

Pascal compiler.

LOCAL FILE NAME PERMANENT FILE NAME DESCRIPTION

*REYSDB ' DB Empty data base.
*REVSABS REVS200 REVS absolute with 200 pages
_ in LCM.

A11 files are assumed to be disk resident on the account number PTCREVS.
An alternate account number may be specified by invoking REVSPRE with that
account number as a parameter, e.g., REVSPRE(acnt). REVSPRE will then attempt
to acquire all files from this account and will note the account over-ride .
with a message in the job day-file.

The final operations performed by REVSPRE are the p]ac1ng of a message
in the day-file signifying REVSPRE completion.

2.2.4.2 REVSXQT Program
The REVSXQT program invokes execution of REVS and controls the acquisi-
tion and disposal of files needed during the REVS step. REVSXQT provides six
positional parameters representing file names as follows:
REVSXQT(FILEO],FILE02,FILEO3,FILEO4;FILE05,FILE06).

The parameters and their default values are:

FILE DEFAULT INTERPRETATION |

FILEOT - INPUT Standard REVS input file (REVS.IN).
FILEO2 QUTPUT Standard REVS log file (REVS.LOG).
FILEO3 QUTPUT Standard REVS output. file (REVS.OUT).
FILEO4 QUTPUT DBCS TAPE6 error file (DBCS.ERR).
FILEO5 OUTPUT SIMGEN debug output file (REVS.DMP).
FILEO6 PUNCH Standard REVS punch file (REVS.PUN).

In addition to the six file over-ride parameters, two other parameters
are provided. The seventh parameter is used to specify a Tocal file name for
a program to be executed instead of the nominal REVS absolute. A value of NO
for the eighth parameter will inhibit the construction of a simulator and
post-processor regardless of whether the REVS SIMGEN function is selected.

- A11 files with the default name of QUTPUT will be automatically printed
by REVS unless the file names are over-ridden on the REVSXQT card. The stan-.
dard REVS punch file will also be automatically punched. If any of these file
names are over-ridden on the REVSXQT call, the user 3ssumes. responsibility for

their proper disposition.

*These files are acquired only to maintain their disk residence; they are
immediately returned by REVSPRE

15

The initial Phase 1 is conditioned by an empty REVSJSL file. In this
phase, REVSXQT backs up the control card stream and then copies the users
REVS inputs, either from INPUT or its over-ride, to the REVSIN file. REVSXQT
then determines which REVS absolute program to execute, places a message in
- the job day-file, and makes a call to the Toader to invoke that program. If
a file name over-ride was given in the seventh parameter, this file name is
used in the Toader call. A message specifying the REVS absolute attached is
put in the day-file and the Toader is then called to execute this absolute.

Phase 2 occurs after the execution of the REVS program. In this phase,
the Large Core Memory (LCM) scratch files used by REVS are returned, and the
standard REVSLOG and REVSQOUT files are copied to OUTPUT, or to user over-ride
file names, preceded by banner pages giving the time, date, and file-id. Also
copied out are the DBCS error file and the REVSDMP file if they are not empty.
Likewise, a non-empty REVS punch file is copied to either PUNCH or an over-
-ride file, with no banner. Finally, the CALCOMP plot output file (TAPE4) is

-~ returned.

If no simulator was requested by SIMGEN or if it was suppressed by the
ejghth parameter, then REVSXQT terminates by returning the REVSJSL file, and
putting.a message in the day-file. Otherwise, the SIMBUIL program is invoked
and the address at which to resume execution in REVSXQT is saved in the
REVSJISL file. REVSXQT will terminate as above when control is returned by
SIMBUIL. '

2.2.4.3 SIMBUIL Program

. The SIMBUIL program is called internally by REVSXQT to build a simulator
and post-processor. SIMBUIL performs the following functions in order, each
time incrementing the phase number and backing up the control card stream:

PHASE NUMBER | ACTION
| 2 ' ~Execute the NESTER program-to reformat the
- ' generated simulator.
3 Execute the Pascal compiler on the nested
simulator.
4 Construct and execute a file of contro] cards

"~ to link the simulator program.

5 Execute the NESTER program to reformat the
generated post-processor.

6 - Execute the Pascal compiler on the renested
post- processor.

7 -A Construct and execute a file of control cards to
link the post-processor program.

16

The result i5 a simulator program absolute on file REVSSIM and a post-
processor absolute on file REVSVAL. Other files used in these phases either
have been printed on output (compilation listings and load maps) or returned.
SIMBUIL then returns control to REVSXQT through the return address saved in
REVSJSL. Throughout the several phases of SIMBUIL, appropriate messages des-
cribing the actions being performed are placed in the job day-file.

2.2.4.4 SIMRUN Program

The SIMRUN program executes a simulator generated by the SIMGEN function
of REVS. The simulator may have been generated in a previous REVSXQT step, or
loaded from a tape or disk file by the SIMLOAD program, either of which will
supply the associated files needed.. Execution of the SIMSXQT function in a
previous REVSXQT step is required to supply necessary simulator input. The
SIMRUN program is invoked by a control card specifying the word SIMRUN.

On initial entry, SIMRUN will place a banner page on OUTPUT, set the
phase number to eight, back up the job control card stream, and call the
Toader to execute the REVSSIM file. (Note: the banner page is written since
REVSSIM may write directly on OUTPUT.) :

After the simulator execution, any validation data generated is copied
to OUTPUT preceded by a banner page, the phase number set to nine and the job
control card stream backed up. The loader is called to execute the REVS post-
processor data base builder (VVDBLDR). Following that execution, SIMRUN
returns the REVSJSL file, and terminates with a message to the day-file.

2.2.4.5 TESTRUN Program

The TESTRUN program executes a simulation post-processor generated by the-
SIMGEN function of REVS. The post-processor may have been generated in a pre-
vious REVSXQT step, or Toaded from a tape or disk file by the SIMLOAD program.
The recording data base used by the post-processor is generated by execution
of a simulator, and is saved along with a simulator by the SIMSAVE program.

(A null data base is generated if. the simulator is saved prior to execution

in a SIMRUN step.) Execution of the -SIMDA function in a previous REVSXQT

step is required to supply necessary post-processor control input. The TESTRUN
program is invoked by a control card specifying the word TESTRUN.

TESTRUN operates in a single phase and ‘does not need to back up the job
control card stream. First TESTRUN places a banner page on OUTPUT for the
subsequent post-processor execution data. Then, the post-processor program
(REVSVAL) s executed by a loader call. TESTRUN does not regain control after
this execution. '

2.2.4.6 SIMSAVE Program

The SIMSAVE program is used to combine REVS-generated simulator and post-
processor related files onto a single file to assure their consistency. SIM-
SAVE copies the REVS generated simulator absolute (REVSSIM), the Event Enable-
ment Definition File (EEDF), the REVS generated post-processor absolute
(REVSVAL), and the post-processor data base file (TAPE10) onto a local file
named SIMFILE. o o ,

17

Theségfi]es are combined on a local file named SIMFILE. . This file can
then be saved on disk or tape by using the appropriate CDC control cards.
The files combined on SIMFILE include the load. modules for the simulator and
post-processor programs, as well as the other. files necessary for their exe-

_cut1on . The recording data base generated by execution of a gamma s1mu1ator
is included: (a null data.base is generated if the simulator is saved prior to
execution in a SIMRUN step). The SIMSAVE program is invoked by a contro] card
specifying the word SIMSAVE. ; . ,

2.2.4.7 SIMLOAD Program

The SIMLOAD program reconstructs the REVS s1mu1ator and post processor
f11es previously saved by the SIMSAVE program. The SIMLOAD program assumes
that these.files are available.on a local- file named SIMFILE, -the user is
respons1b1e for supplying the necessary . CDC file cards. to obta1n this local
file. After the SIMLOAD program is complete, the Toaded simulator and post-
processor: may be executed by the SIMRUN and TESTRUN. programs after, the re-
quired. SIMXQT and SIMDA. 1nputs are. supp11ed in a REVSXQT step.

The SIMLOAD program is used to retr1eve the four f]]es p]aced on: SIMFILE
by a previous execution of SIMSAVE. These files are copied from SIMFILE and
placed on>the files named REVSSIM, EEDF, REVSVAL,‘and ‘TAPE10. :

2.2.4. 8. REVS Contro] Stream Sequence

Us1ng these programs, the normal JOb set- up .can -be very s1mp1e requ1r1ng
a job card-to identify the job and acquire necessary resources. Even though
the job set-up appears simple to the user, the actual job accomplishment de-
pends on a complex job control stream sequence, which must be tailored for
. each host machine. . Its 1mp1ementat1on on the CDC 7600, part1a11y described
above,-is- presented in context in this paragraph

REVS 1s executed within a mu1t1 phase contro1 stream Th1s control stream
is necessary to control the different stages of process1ng that REVS must do.
This section describes those .phases.and how they are controlled by the REVS
program. ' Figure 2-2 illustrates the control stream and points (A through P)

- are cited throughout the following d1scuss1on _ '

REVS is 1n1t1a11y called by the contro]l statement ca11ed REVSPRE (A)
which -is brought into memory and generates the control statements for the file
ass1gnments in.anticipation of the REVS run.- After the file ass1gnments are
made, the user may use his own control statements. to redefine the files that
- are different from the defaults.. This allows. the user to specify. his own data

base rather than the standard initial data base. When the REVSXQT.statement
is encountered (B), the REVSXQT control program finishes the file assignments
required:to run REVS, and generates the control statement to-bring in the REVS
program itself. After these control statements are processed (C) the REVS
program executes-and. reads in the-RSL., the REVS command language, and the RSL
statements that are to be .processed. The REVS program, at this point, consists
-of .Pascal and the necessary data base to analyze RSL. Special.communication is
required: between the.REVS program and the REVSXQT program (D) where -the program
informs REVSXQT-as to whether further processing is requ1red for s1mu]at1on

18

ACTION SPECIFNED
Bf ULIR sepreLnep
CUNTKOL STATIMLAT

{a) LOAD .‘
RLYSPRE
JOB STEP GEMERATES
» CONTRCL STATIMINT(S} FOR
peate et ACTIONS INDICATED BY
v \ et ARROW
CESIGNATE
. REVS
-DEFAULY
FILES
..
: L‘ . ot
T R
»
3
DEFAULT - - (USER FILE STATEMENTS PRESENT)
FILE (HaN5Zs /
(e
o RSL
o RSLXTND
REVS FUNCTIONS ¢ o R3D

o RMETGEN
e SIMGEN (SOURCE)

CATA FILE USED BY
COKTROL STATEMENT
GENERATION SGFTWARE

i<l

[e /
Revs / CONDITIONS:
) / (1) KO FURTHER COMMANDS
RELOAD (2) SIMGEN COMMANDED
Revsxar . (3) EITHER:
{o) © SIMXQT WITHOUT SIMGIN
< o SIMDA WITHOUT SIMGEN
. ° .
i £X£CUTE
«—_— PEYSXQT
RELEASE
REVS
FILES
) e
© (e} W
8 (2)
$
3 £

Figure 2-2 REVS Job Sequence

19

THIS PASS PRODUCES THE
EXECUTABLE LOAD MODULE
OF THE GENERATED SIMULATOR

THIS PASS FRODUCES THE
EXECUTABLE LOAD MOOULE
OF THE POST-PROCESSOR

‘RELEASE
" REMAINING
SIMBUIL /
FILES
/
RELEASE
REVS -
FILES
_

.
&

RADE0-100

Figure 2-2 REVS Job Sequence (Continued)

20 ‘

SelL?

rA0E

Figure 2-2° REVS Job Sequence (Continued)

LOAD A
SiMBUIL G~

oecute |
simiIt - R

LOAD
NESTER

EXECUTE | /

MESTER /

|S|‘

SINBUIL

EXECUTE &

SIMBUIL

/

EXECUTE
eascal | /
COMPILER /

LOAD
SIMSUIL

-

EXECUTE f=— T
RN R

©

LOAD
DC
LOADER

DYECUTE
cuc
LOADER

21

Y

AK m'umxse
L.y ; .

(SIMXCT COMMANDED)

. < LORD >
(8] SIMRUN
<> ExeiuTE I~
e - ——] SIMAUN \\\
; v\

; ~ /
.9 / \
: ‘ ;(mmoa i , |

EXECUTE . /
SIMULATOR /

H 'l
[¥] (WWooLoR]

RELEASE
SIMJLATION :
FILES

Figdre 2-2 REVS Job Sequence (Continued)

122

Y

_ OTRERWISE)L
J/

(SIMDA COMMANDED)"

4
LOAD >
Q) . TESTRUR

BeCuTE |
TESTRUN |\
| !
/

) /
1080
POST_
PROCESSOR _

EXECUTE
POST_
PROCESSOR

g

L/

OTHERWISE - N
. L/

W '(su&vr_ COMMANDED)

o e)

EXECUTE -
SINSAvVE N

PERMF
"DIREC

ILE
TIVES

. X

A
NP

o

s R

(o)

Figure 2-2 REVS Job Sequence (Continued)

‘23

RADB0O-005

© Figure

LOAD

P
[¥) . SIMLOAD 4

© EXECUTE
- SIMLOAD

L
1

DESIGNATE

.. DESIRED ,
STMULATION
FIES | iy

P

2-2 REVS Job Sequence (Concluded

)

If simulation has not been requested, the REVS job stream terminates at this
point (E). If a simulation is required, a control statement switches (F) to
the beginning of the execution of the program SIMBUIL.which constructs the
simulator. " First, the NESTER program is called to improve the format of the
generated simulator. The SIMBUIL program generates the control statements to
~ bring in SIMBUIL a second time (G), where control statements are generated by

 'SIMBUIL to call the Pascal compiler to compile the generated simulation pro-

gram. SIMBUIL is called in. again (H) to generate control statements to bring
in the loader to generate an absolute version of the simulation program. Next,
- SIMBUIL 1is brought in once more (I) to nest the Pascal generated post-processor.
When that is completed, SIMBUIL is called again (J) to generate the statements
to call the Pascal compiler to compile the post-processor. After that compi -
lation, SIMBUIL calls the loader into memory to generate an absolute version
of the simulator post-processor program (K). Then, at (L), a user-supplied
~control statement, SIMRUN, calls in the.simulation run program. This program
generates the necessary control statements to actually execute the simulator.
The simulator is brought into memory, is executed, and then exits from memory.
Control then brings in VVDBLDR, the data base bujlder program (M), executes

- it, builds a data base from the simulation run, and then exits from memory.

At point (N), the user-supplied control statement TESTRUN may call the TESTRUN
program to generate the control statements to run the post-processor. If the
user wishes to save the simulator, the SIMSAVE command is issued by user which
calls in the SIMSAVE program (0) to generate the necessary control statements

- to save the absolute of the s1mu1ator and its post-processor as a permanent
f11e : .

Once the simulator and post-processor have been saved, the sequence F to K
need not be repeated for subsequent runs unless mod1f1cat1ons are necessary.
When the 'REVS command stream contains a SIMXQT or SIMDA command without a
preced1ng SIMGEN command, REVSXQT at (D) will arrange for SIMLOAD to be brought
in to recall the saved files and generate the proper control statements (P).
The sequence L to 0 is then performed as before

'-2.2.5-.Current:REVS Insta]]at1ons

REVS is currently operational at five sites shown in Table 2.1. The TI-
ASC version at NRL was an ear1y release and does not include subsequent changes
and performance. enhancements. 'In addition, this year, BMDATC is sponsoring
transfer of REVS to a DEC VAX 11/780 at- the Advanced Research Center (ARC).

2.2.6° REVS Software Env1ronment Regu1rements

2.2. 6 1 Pasca1 Comp1]er Requ1rements

rhe Pascal used in the REVS software is h1gh1y compatlb]e with the "stan-
dard" set forth by Jensen:and Wirth. However, there are some elements of the
standard language which are explicitly stated to be implementation dependent.
.Other elements are defined in a manner which allows different interpretations.
'Sti11 other elements which are clearly needed to support. software development
and ma1ntenance are not part of the standard

25

" RAD80=020

. Table 2.1:"Current .REVS Installations

i

LOCATION -

'NAVAL RESEARCH LABS,

ADVANCED RESEARCH CEKTER,
HUNTSVILLE, ALABAMA

HASHINGTON, D. C.

* MDAC, HUNTINGTON BEACH,
CALTFORHIA O

TRW, REDONDO BEACH, =
CALIFORNIA

NAVAL AIR DEVELOPMENT

_CENTER, VARMINSTER,
© PENNSYLVANTA .

Arrease b ol <y
coc 7600, | | x|,
Jepc CYBER ™ | o L x| X
74/174 1SS
COC CYBER

174 .
RYCHE

"iee >

26

TRw has spent cons1derab1e resources to modify and improve a basic CDC
6000 series Pascal system in order to implement a highly usable system capable
of supporting REVS on several different CDC computing systems. At present,
.more compilers are being offered on the market by vendors of various machines.
Not all of these provide the sophistication required to support REVS. An STE
Pascal compiler must support the following REVS needs:

1.

Nesting Limits - REVS is a highly structured software program.

As such, there is extensive use of language construct nesting,
both statically (e.g., procedures defined within procedures)

and dynamically (e.g., recursive calls to handle recursive REVS
data and-control structures). The currently defined static
nesting is nine levels deep while the dynamic nesting is a
function of the RSL constructs and has no definite Timit. -Adap-
tation of REVS to nesting limits would be extremely d1ff1cu1t and
would impose 1imits on the supported RSL constructs.

Procedure Size Limits - REVS contains some very large Pascal pro-
cedures, both in terms of the code space (~500 lines) and in.
terms of the number of variables defined (~300). Partitioning
these procedures into smaller pieces would cause considerable .
breakage to the current REVS software structure

Procedure Number Limits - The current REVS program contains over

1100 Pascal procedures and functions. Reducing this number would
require a considerable effort to restructure the REVS code and
duplicate -blocks of code in several .Jocations.

Dynamic Storage Imp]ementat1on - REVS makes extensive use of

the Pascal dynamic storage management to re-use the same storage
area for multiple purposes. This requires a full implementation
of both NEW and DISPOSE. Restructuring REVS to operate in a

1imited memory space without this implementation is probably not
feasible.. The alternative NEW, MARK, and RELEASE implementation

is of only limited utility to REVS

File Restrictions - REVS uses many Pascal f11es, both - 1oca1 to

the REVS program (i.e., scratch files) and global (i.e., known
outside the REVS program). These files are declared at several
Tevels in REVS and are both textual and non-textual in nature.
REVS could not be made operational without non-textual files. The
inability to declare global files at any Tevel would involve

- considerable breakage to the existing REVS software.

Interface to FORTRAN - The data base control system.used to imple--

ment the REVS DBCS is written in FORTRAN and uses a FORTRAN random -
access file to mairitain the data base. The Pascal system used
must, therefore, support the calling of FORTRAN routines and-
functions from Pascal and must allow a mixture of FORTRAN and
Pascal I/0 (on different files).

27

10.

* ‘Support of GOTQ's - Several of the REVS functions ‘use GOfO s

- which transfer control out of the procedure in which the GOTO .
" appears. This is.used to efficiently handle certain error. con-..

dition$ and to.allow the termination of certain processes (e.qg.,
user termination of on-line .-RADX output) without the need for. ..
extensive termination code. The revision of REVS to avoid the
need for these GOTO's would be a substantial task and would

increase the size of the REVS program...

Separate Compilation - It may be quite expensive to compile the
entire REVS program every time a change is made. Frequent changes
will undoubtedly be required during the REVS installation, with

Tess frequent changes -during the maintenance period. The inabil-

ity to separately compile parts of REVS would be costly, pro-
bably both in time and computer resource usage.” In addition, the
current configuration of the REVS generated post-processor re-
quires the existence of separately compiled Pascal procedures.

. The revision of the SIMGEN. function to generate the necessary
,Pasca1,source fdr:COmpi]ation each time is-a substantial task.

" Symbolic Debugging:and Development Utilities - The ultimate 1ife-

cycle cost of any:software product often depends on the quality
of the debugging and program development utilities available.

The cost-efficient modification, installation, and maintenance of

the REVS software requires a highly developed set of such utili-
ties. Required are user-callable symbolic stack and heap dumps,
procedure call trace-backs, and extensive run-time :error checking
(e.g., bounds check, subscript checking). 'Also needed.are stand-

alone utilities 5uch as- a nester program to reformat the free-

format Pascal to reflect the program structure and a cross-refer-

ence program to produce a concordance of program variable usage.
‘It is expected that a s1gn1f1cant part of the REVS installation
. effort may be devoted. to enhanc1ng ex1st1ng utilities and imple-

menting additional.ones.
Character Set - The character set used by REVS cons1sts of the

upper case letters, digits, and a.small number of special charac-
ters. No Tower case letters or special control characters are
used:- The Pascal system however, is assumed to-allow the under-
score and dollar s1gn characters in identifiers. . Extensive use

~of the underscore is made in REVS generated s1mu1ators and post-

processors. The dollar sign is used in the names of-a few utility
Tibrary routines called. by REVS. If the dollar sign was not
available the names of .the: routines would have to change, but this
would only require selective recompilation. .Lack of the under-
score, however, would be' unacceptable because.the underscore is

‘used as a connector-to permit mean1ngfu1 multi-word RSL element,

attr1bute, and relation names

28

Consider the following alternatives:

e With Underscore: DAY _OF WEEK
o Without Underscore: DAYOFHEEK
L "Short name, six characters as in FORTRAN DYOFWK

By making identifier names look 1ike words .or sequences of words that are
meaningful, the clutter of mnemonics and run-together words is lessened,
thereby increasing the readability of the RSL. The hyphen could not be used,
as in COBOL, because it is indistinguishable from the minus sign that must be
used in REVS arithmetic operations, and would require analysis of the context
in which it is used.

Contemplated extensions to REVS, such as the ' pretty print" option will
require the 96 character ASCII character set. Thus, it is desirable that both
the comp11er and the STE "host support this character set.

11. External Files Processing - Standard Pascal recognizes both
external and internal files. External files are those files
that are listed in the program statement at-the beginning of
the program. These files can exist prior to and after the
execution of the Pascal program. Internal files are files that
are used during the execution and disappear when the Pascal pro-
gram terminates. REVS requires all.internal files to be treated
as external files to retain them for ‘later job steps, even though
they do not appear in the name Tist of the program statement.
Treating the internal files in this fashion is a special option

~in the current Pascal compiler. Absence of this option would
requ1re changing the source code to place a11 dinternal file
names in the program statement.

2.2.6.2 Special Pascal/Operating System Communfcdtion Requirements

The Pascal environment must provide a means of communicating pert1nent
 data to the 0/S during the execution of the Pascal program. This communica-
tion includes such things as dynamically assigning files, determining time of
day and date and switches to a]ter the job contro] stream.

i REVS requires that files be dynam1ca11y opened -and closed dur1ng the
Pascal program execution. Standard Pascal allows externally-defined files to
be identified only at the beginning of.the Pascal program. This is done in
the-Pascal language by file names-on the program statement. REVS Pascal dyna-
mically assigns and deassigns files through two special routines. These rou-
tines are OPEN$ and CLOSE$. These routines associate a name with an external
file, and are unique to the REVS Pascal environment. If the host system does
not have this capacity, the means of attaching more than one add-file through
the REVS control cards would not be possible. This would be a disadvantage

in a "cardless" data entry system environment. C

29

REVS Pascal informs the user of the time and date. the program is run for
documentation purposes. Standard Pascal does not have the time and date func-
tions. These must be available for proper Tabeling of user: 11st1ngs

During the execution of the REVS program the user may spec1fy several
additional process1ng steps to be completed after its execution. These addi- -
‘tional processing steps will require additional control statements. These
are for R-Net plots and simu]attons.- Although specific implementation:is -
dependent upon the job control”mechanism of the host system, the capability
to modify the job contro] stream from’ w1th1n the Pascal program must be
prov1ded

2.2.6.3 FORTRAN Comp11er Requ1rements

REVS 1ncorporates over 10, 000 11nes of FORTRAN code ‘and 1nterfaces with
FORTRAN routines for CALCOMP p1ott1ng and interactive- .graphics. This ‘code is
ANSI FORTRAN 66 with the fo110w1ng exceptions, confined to the Data Base Con-
tro] System (DBCS) . _

e Random- F11e I/0 - Random F11e I/O is requ1red for file I/0 to
~roll in and roll out data base pages. Since the data base file
~ is not a sequent1a1 file, but random access, the FORTRAN execution
‘ env1ronment must prov1de for random f11e I/O

- @ MWord Mask -and Shift Operat1ons - Work mask and shift operat1ons
are used to allow bit manipulation on data -words of the host
machine so as to allow the packing of multiple data.items into

_.one computer word. - Using these extensions, it is possible to
“tune" a -host computer's data base control system:through a
trade-off- between CPU, memory and I/0 operations to attain an
efficient REVS processing-capability. This efficiency, however,
can be attained only through handcrafting these modifications at

- each site. Through judicious tuning, the performance of the DBCS
has been increased up to 100: 1 over the or1g1na1 Un1vers1ty of
M1ch1gan 1ssue : o . :

2.2.6.4 CALCOMP FORTRAN P]ott1ngﬁRequ1rements

The REVS system utilizes the basic CALCOMP FORTRAN p]ot rout1nes These
routines are used to generate the R-NET plots.from REVS. It.is not necessary
to provide CALCOMP software, ‘but -the routines ‘must be functionally:equivalent
and present a calling interface identical to the CALCOMP routines: :PLOTS,
PLOT, NUMBER, and SYMBOL. The support software for Zeta Research p]otters
recent]y procured by RADC sat1sf1es th1s requ1rement o :

2.2. 6 5 ARC Graph1cs Sx;tem Software -

At the BMDATC Advanced Research Center (ARC),-the‘user application pro-
grams interface with the ARC Graphics System through.a library of .forty-one
FORTRAN subroutines supporting seven functional groups:

30 -

'@ Console Initialization and Control - These subroutines permit
access, control, and release of terminal sets (Group One).

¢ - Keyboard Control.and Data Ihterface - These subroutines cause
. the keyboards‘to be enabled or disabled and allow input of
alphanumeric data from terminal keyboards (Group. Two).

® Trackball Control and Data Interface - These subroutines cause
the trackballs to be enabled or disabled and allow input of
display cursor position from terminals (Group Three). '

o Disp]ay Control - These subroutines communicate display screen
position and color control information to the display generator
(Group Four). : :

@ Alphanumeric Information and Displays - These subroutines permit
. the drawing and formatting of characters and symbols on terminal
display screens (Group Five).

© Graphic Displays - These subroutines are used to generate the
data needed to draw figures and construct graphical presentations
on terminal display screens .(Group Six).

@ Supporting Utility Capabilities - These subroutines are special-
purpose capabilities that incTude interactive text editing, time
delay control of application software, and video recording and
‘recovery of screen displays (Group Seven).

REVS currently makes calls to 24 of these routines (two in Group One,
five in Group Two, six in Group Three, two in Group Four, three in Group Five,
five in.Group Six, and one in Group Seven). These routines are specific to
the ARC system, equipment, and operations philosophy (i.e., the software is
not necessarily applicable outside the ARC environment).

The best strategy to follow for STE use would be to maintain the same
REVS FORTRAN interfaces where relevant, and to implement new FORTRAN routines
that are functionally equivalent, but which are adapted to the particular STE
equipment, operational environment, and needs. :

1 2.2.6.6 Memory Management Requirements

The CDC installation of REVS minimizes primary memory requirements
through use of memory overlays, and is currently divided into some 40 over-
lays. The REVS overlay system requires that the overlay process be totally
trarisparent to the source program. This means that nowhere within the source
of REVS are there any calls to an overlay loader. The calling of code for an
overlay must be entirely generated by the CDC segmented loader. To achieve
the same results on a non-CDC system would require a similar overlay scheme.
Any overlay scheme which required source code changes would be unacceptable.
A virtual memory system is an alternative to overlays.

31

A virtual memory system is also an alternative to the current REVS
method of paging in the data base !from disk. Preliminary expér1ments on the
VAX 11/780 indicate that the native virtual memory system is more efficient
than paging via the DBCS. . The memory management technique is more critical
in lTimited core conf1gurat1ons, and will have to be assessed for each candi-
date STE configuration relative to its other parameters.

2.3 . PERFORMANCE AND CONFIGURATION ANALYSIS MODEL (PERCAM)

PERCAM is a simulation system driven directly by Event Logic Tree (ELT)
representations of systems. An ELT (see Paragraph 2.3.1) is a graph model
representation which functionally represents a system's operational logic
(sequence of events, time delays, and decision nodes). It was designed speci-
fically to perform a range of analyses from quick turn-around cursory studies
- to in-depth analysis efforts. Within PERCAM, common system operations are
stored as a set of components. Each component is a module of code (a Macro)
that simulates a specific activity. ~Any ELT that is described in terms of
these components can be processed by PERCAM to combine the component code into
an executable module (the engagement model). If a system cannot be adequately
described by the existing components, additional ones.-can easily be added.
This capability frees.the user from.the programming details usually associated
- with simulation construction and allows the simulation to be constructed by

the system analyst rather than an experienced programmer. | :

User-defined environmental conditions (e.qg., scenario, threat) and
system performance characteristics (e.g., sensor detection characteristics)

-+ can be input:to an Engagement Model which executes in a Monte Carlo environ-

ment. A post-processor summarizes and tabulates re5u]ts in a user -oriented
format (tables, histograms, etc.).

PERCAM 1is current]y being ut1]1zed to ana]yze a var1ety of system types
(from tactical.weapon systems to computer center operations) from a variety
~of standpoints -- from system performance effectiveness to computer loading
and -message traffic. :Consequently, several component libraries exist' for
use depending on the nature of the problem to be addressed (see F1gure 2 3).
Currently, component libraries exist to analyze tactical systems from an
-effectiveness standpoint utilizing both the FORTRAN language as a base and
the COMO simulation system as -a base. Other component libraries exist to
analyze system resource requirements utilizing the TRW developed SALSIM sim-
u]étion‘]anguage as a. base ,

- The PERCAM ana]ys1s process, shown in F1gure 2-4 beg1ns with definition

- of a system in terms of ELT and- ana]ys1s of key .performance parameters. (Any
components not adequately templated in the component library are also developed
at this time.) -Logic link specifications, corresponding to the ELTs, and, per-
formance data definitions are input-to the Preprocessor (macro-processor simu-
Jator builder) which selects and conditions components .from the library accord-
ing to the user input. Specific operational data values are defined to the
simulation executive at run-time.

32

€€

SPECIAL
PURPOSE
: COMO CONMPONENT - -} - SALSIM
oM COMPONERT LIBRARY COMPONENT
o NENT LIBRARY : LIBRARY - | i
. \ IPONENT
LIBRARY < — LIBRARY

PERCAM PREPROCESSOR

EVENT LOGIC
TREE INSTRUCTIONS
MGDEL PERFORMANCE
DATA

MODEL.)
PERSORMANCE
DATA /

4 »

. SYSTEM PERFCRMANCE MODELS

Do) [gggo&o | [spectac] | sasmi§ [ease 1v |

STMULATION h ' ‘ K SMULAT
MUL - _ : S o SiMULAT ION
« FRAME | covo — LS FRAME

Ny - FRAME ' PURPOSE FRAME

2 FRAME
i

" USE THE BEST SIMULATION MUDE TO SOLVE THE PROSLEM

Figure 2-3 PERCAM Multi-Simulator Ph:losophy

2%

EVENT LOGIC TREES

e

o ,SYSTEM B

([}
b @

' SYSTEM A

"~ @ TEWPLATED €ODE
~ 4 GENEPAL
- @ SYSTEM SPECIFIC
o BOOKKEEPING

7 SYSTEM
COMPONENT
LIBRARIE

MACRO-PROCESSOR
SIMULATOR
BUILDER

1

LOGIC LINK SPECIFICATION

PERFORMANCE (MODELING) DATA , - ?c =
: o } MODEL
PRE-PROCESSCR | ——
© INPUT SET. 0 -
SYSTEM
PERFORMANCE

M-’)DF.LS

[/” POST-PROCESSOR

o SYSTZM-PERFORMANCE -
SUITIARIES

HISTORIES
e PATH EXECUTION
FREQUENCIES

e .

Q
.)

| \;f_T:i.. — 1

RAD80-004

Figure 2-

o TIME RISTORY EVENT _
CALENDAR o o MODEL INTERACTION WITHIN:

o DATA FROCESS:HG LOAD |

- CORTROLLED ENVIRONMENT

ENSSGEMENT | A

siuaTIoN - [——
' ' CPERATIONAL ENYIRONMENT
o ENCOUNTER SCENARIO
o SYSTEM PARAMETERS
¢ ENVIRONMENT (TERRAIN, ETC)

"o CONFIGURATION .. = .

4 The PERCAM Analysis Process

The user will typ1ca11y execute a series of runs to examine the effects
of varying fixed system parameters (feasibility and sensitivity analysis), or
- perform sets of Monte Carlo runs to determine overall system behavior under
non-deterministic conditions. The Post-Processor reduces and displays run
outputs. for manual analysis by the user. The building-block approach to simu-
lator definition and construction also permits rapid evaluation of alternate
system structures and alternate operating rules. ‘

2.3.1 Event Logic Trees

Event Logic Trees (ELTs) are structured graphical representations of the
sequence of actions performed by a system in its operating environment. "The
ELT consists of a series of linked functional blocks that completely describe
the operational paths the system may take to reach any number of precisely
defined termination points. Branching within the tree is controlled by vari-
ous decision nodes. An example ELT is shown in Figure 2-5.

Each function is described to the Tevel of detail necessary to represent
system operation consistent with the objectives of the study. For example,
during the initial phase of a system sensitivity analysis, many areas of the
system may be only partially defined. The functional blocks representing
those areas might, therefore, be defined with less complexity than other sub-
systems/areas for which more detailed operational characteristics exist. As
- the study progresses, more precise operational logic can easily be added with-
in the structure of the ELT.

Associated with each functional element are performance models that de-
fine the characteristics of that segment of the tree. It is the performance
model that predominately controls the fide]ity of an ELT representation. - For
example, almost all weapon system models require the determination of probabil-
ity of kill once the defensive ordnance has intercepted the.target. The user
analyst can control-and modify the fidelity of his model to vary the deter-
mination of P from a simple constant to a complex set of curves that encom- .
pass a large number of variabies. Once the basic operational ELT structure
has been baselined, it is possible to significantly increase (or decrease
when desired) the overall modeling fidelity without time- consum1ng modifica-
tions to the logic flow. :

Since an Event Logic Tree is a visual representation of a sequence of
actions, engineers and systems analysts can easily communicate their under-
standing of the sensitivity and impact of specific parameters on system per-’
formance. In part, a preliminary assessment of the relative sensitivity of
each function with respect to the overall performance figures of merit can
often be made from visual inspection. First order assessments of this type
are very useful as precursor analyses; however, manual analyses are usually
too restricted and time-consuming to be used for a full-scale study of a
number of different options. An automated simulation capability that builds
a computer simulation directly from ELT models has, therefore, been developed
'to decrease the analysis timeline and provide an effect1ve means for conduct-
ing studies that consider a Targe number of variables.

35 -

DETERMINE BOOSTER POSITIONS RELATIVE T0
1 -} SENSOR PLATFORM

ARE ANY BOOSTERS IN SENSOR FOV AND NOT
MASKED BY EARTH -LIMB

YES

FOR EAGH BOOSTER DETERMINE PROSABILITY-OF .
DETECTZON FOR EACH TYPE OBJECT (RV .DCY, FRAG,
START)

Pd;. f(R)

" CONTIRUE
‘SEARCHING

" \DETERMINE NUMBER OF DETECTIONS IN EACH OF 3 COLORS

‘4 fn... - = f (NUNBER OF OBJECTS OF EACH TYPE., Pd.)

- DET, g > Rt R
5

SENSOR" PREPROCESSING. ALGORITHM

_ REMAINING
DETECTIONS'

" DETECTIONS RELATED TO

FRAME-TO- FRANE o SSTEM NOISE -

- CORRELATION © COSMIC RAYS
' ® - DIM STARS . -
¢ SOME TANK FRAGMENTS
ESTABLISHED :

. TRACKS -

DETECTIONS RELATED TO
o STARS |
‘o BACKGROUND OBJECTS. .

OTHER DP
- FUNCTIONS

FADSO-003.

Figure 2-5 ELT Example

36

. 2.3.2 PERCAM Software

PERCAM currently consists of four software elements: a Library Builder
 (LIBLD), a Component Library, a macro-processor simulator builder known as
the Preprocessor (PREPRO), and a Post-Processor. Each of these elements is
- discussed below. ' : :

2.3.2.1 Library Builder (LIBLD)

The LIBLD modu1e builds a Component Library of macro templates which is
used as one of the two input sets to the Preprocessor. LIBLD also produces
printout to describe the Component Library to the user. '

A Component Library is created when LIBLD processes a file containing
LIBLD Input card image. 1nput data. This LIBLD Input describes components
which are to be included in the Component Library. Components can (and gen-
erally will) contain delimited substitution symbols. - These are symbols for
which particular text or integers can be substituted when ‘the component is
particularized by the Preprocessor. Examples of the three types are component
name lines, text lines containing substitution symbols and text lines which
contain no substitution symbols. The LIBLD Input corresponding to a single
component is composed of one component name Tine followed by the text lines
of the component. The text line card images which follow the name line of
the component may be intermixed between text Tines which do and text lines
which do not contain substitution symbols.

2.3.2.2 Component Library

_ The heart of the PERCAM system is the PERCAM component library, which
provides the templates from which the FORTRAN simulator .programs are built.
This FORTRAN-based library is flexible, allowing the user of PERCAM to change
the components and add new components as dictated by his needs for simulation.

The components in the PERCAM library are macro-templates.. These templates
are FORTRAN statements with macro-processor control characters embedded in
them. As the macro-processor itself is very simple, only a knowledge of
FORTRAN 1is required to make extensions- and changes to the components. Once
the source code of the components to be put into the macro-library is assem-
bled, it is then pre-processed by the component Library Builder into a com-
pact form for efficient access of the modu]es and quick generation of the
simulation program

. The components are 1ntent1ona11y small and genera11zed to maximize their
utility for a wide variety of problems. This decreases the operational effi-
ciency of a simulator, but substantially reduces its construction time,
yielding a net time saving to produce output. In practice, the number of
basic components for:a general purpose library is small. Within a specific
technology area, users accumulate more specialized components and problem-
particular components over time. Examples of typical components are given
in the following subparagraphs. . :

ADCM - Attackér Defender Control Model. The'attacker/defender model
component contains the simulation. executive, initialization software, and

37

some of the general support software. Preprocessor inputs:for the ADCM com-
ponent can be d1v1ded 1nto severaT segments

N Dynam1c memory flTe def1n1t1on

ELT decTarat1on

System performance 1nput spec1f1cat1on

Threat definition '

S Program spec1f1cat1on

DC - Dec1s1on Component - The Decision Comoonent transfers controT to :
either of two user-specified elements depending on whether the 1ndependent
variable (P) is Tess than or: ‘greater: than a random number RN which is in
the range 0. to 1. L _ 4 : . :

DPLD - Data Process1ng Load Spec1f1cat1on Component The“DPLD'component
records data processing throughput, memory, and 'data rate requirements’ on.an
: output file for use in: post- processing The requirements for up. to ten states
or act1v1t1es ‘can be spec1f1ed 1n one DPLD component C oo

EC.- EvaTuat1on Comp;nent The EvaTuat1on Component evaTuates a user-
spec1f1ed dependent variable.- Evaluation may be carried out in two different
ways. -In the first, the'dependent variable,: D, is-evaluated as a function .of
up to four independent variables, VIT,...,VI4.. An interpolation is'performed
using tables supplied by the user. The second evaluation format assigns a
value, EXPR, to the user-specified dependent variable. "EXPR may.be'a real’
constant or a mathematical expression. Both formats may be used s1muTtane—
ously or independently.- The .Evaluation Component:provides-the capability of
evaluating -a dependent -variable as a function of -any or several:of::ithe pro-:~
gram- suppT1ed independent variables. Dependent var1abTes, once evaluated,:
may be- used:.in .other components, e.g., a variable may. be input to a- Dec1s10n
Component to determ1ne wh1ch of two branches of the ELT to foTTow

ELT = ELT Def1n1t1on Component The ELT Component must be used to ini-
tiate specification of each ELT .to 'be defined. in. the model. -Preprocessor™ '
inputs allow the user to define data structures:.which are local to this ELT."
The global data. structures defined in the ADCM component are automatically
made -available. - Preprocessor inputs- optionally retrieve the pointer to the
active system (attacker or defender) from the event notice and store it.in
a TocaT var1abTe for use in the ELT. -

-END .- End Component The END component is used to 1nd1cate the end of ..
the initialization processing (INITIAL) after the ADCM component andto ,indi-
cate the-end of other subrout1nes constructed ut1T1z1ng the component T1brary.

ENDELT - ELT End Component The ENDELT component is- used to 1nd1cate
the end of a user-defined ELT. Process1ng on event not1ce is: term1nated and-
the notice is purged from the system. : . A R

‘EVNT - Event Logging: Component. _The'EVNchomponent is.included:-in the
ELT .at points where data is to be .recorded so that a time history of ‘signifi-
cant events can be analyzed with the Post-processor. This component causes

38

data to be written on the Event Tape (TAPE7). Information includes the ‘
replication number, game time, event number, event type, active combat unit,
and event-related data defined by the user.

MATLB - Math Library Component. This component contains a few commonly
used subroutines. supporting vector and matrix operation. Included are matrix
multiplication, vector cross product, vector product, vector magnitude, vec-
tor subtraction, matrix transpose. These. routines can be used directly in
the FTC/INLINE code. There are no Preprocessor inputs (other than component
name) for this component. : . :

TC - Time Component. In addition to allowing one ELT to-schedule another
(or itself at some future time), provisions have been made with the TC compo-
nent to allow time delays to occur within an ELT. Processing commences with
a designated component within the ELT after the delay has occurred. Specified
data (Tocal variables) can be saved for use after the delay has occurred. Any
data local to the ELT (i.e., counters) and not designated to be saved are sub-
ject to change during the delay period.

FTC/INLINE - FORTRAN Components. The user has two means to augment the
component library with FORTRAN code within a model; the FTC component and a
pseudo component INLINE.

The FORTRAN Component (FTC) enables the user to construct a specialized
code with up to twenty FORTRAN statements -- each of which is not to exceed
20 1ines -- ten of which can have statement numbers. These statements can be
executable or format statements.

The pseudo component INLINE allows FORTRAN code. (in FORTRAN format) to
be input in the Preprocessor input stream with the other components. The
code input under INLINE is reproduced 1n the generated code at the point in
the ELT model where it was input.

The FTC and INLINE .components are provided to allow the user to address
needs not anticipated when the other types of components were conceived.

12.3.2.3 PERCAM Preprocessor

The PERCAM Preprocessor assembles the ELT models using components from
a Component Library and integrates them with an Engagement Model simulation
executive (also contained in the Component Library).

The Preprocessor program uses the Preprocessor input as a guide for
generating :‘FORTRAN code which functionally models the attacker and defender.
Most of the performance data utilized by PERCAM is input through the Pre-
processor.

With the exception of the $componentname input, which acts as an iden-
tifier and causes a particular component type to be evoked from the Component
Library, all other inputs cause substitution of a character or character
string into the component code replacing the Preprocessor input symbol. If
any one of the Preprocessor input symbols in a Tine of component data is not

39

specified in the user input to that component the entire line of code is
omitted from the generated code.

2.3. 2 4 PERCAM Post Processor

The PERCAM Post processor was deve]oped to prov1de high v1s1b111ty
~information -on the results and logic processes of PERCAM simulations. This
capability has a variety of uses for the analyst. During the test case:
checkout- and preliminary analysis, the event 1ist (which shows the logic
followed and decision parameters for each attacker and defender) ‘and .the .
scenario summary (which displays the simulator-received defender and target
Tocations and attacker-paths) may be particularly useful. In the comparative
analysis phase, the time/range summary (which gives minimum, maximum, and
average ‘times for specified defender events). the weapon release summary, and

.. the decision component path execution:frequency display (which gives branching

statistics) all provide useful, pre-processed data.. For results presentation
purposes, in addition to the already mentioned displays, there are.also the
ki1l probability bar chart the cost data summary, and a CALCOMP scenario
p]ot

S1nce the Post-processor was deve]oped for use with PERCAM, the user
1nput format was constructed to appear. as similar as possible to the PERCAM
simulator/construction 1nput. Displays are modular and 1ndependent of each
-other and may .be requested in any'order Each display request is begun with
a keyword, preceded by a $, as in PERCAM component spec1f1cat1on, and other
~data follows in a free-field format.

‘The data flow from the user and simulator through the Post-processpr is
summarized in Figure 2-6. Most Post-processor disp]ays are derived from an
event list which-is output from the PERCAM simulation. " Each component in the
component 1ibrary contains a section of code which writes current data about -
the component, when executed, on-a file (TAPE8). This-code is nominally in-
active, but may be activated by the inclusion of a control variable in the
.component specification. Each:record written from-an executing component is
called -an ‘event". Also saved are the s1mu]ator input data and attacker lo-
_ cation time h1stor1es

The modular construction of the Post—processor allows easy addition of
new displays. . The addition of a new disp]ay would nominally involve only
the addition of the new keyword to the 'allowable keyword"' 1ist, a call to
the new subroutine in PROGRAM MAIN, and the inclusion of the new subroutine,
or subrout1nes, 1n the program 11brary

2. 3 2.5 Future Enhancements

A co]or graph1cs display capab111ty was developed on a recent PERCAM
project for use in conjunction with the Post- ptocessor. This package is
installed at the Army BMDATC Advanced Research Center (ARC) in Huntsville,
~.ATabama, -and uses the same ARC Graphics System software that supports REVS.
At present, this capability is not formally integrated into-the PERCAM system
because it is tailored to the ARC facilities. It could be -provided for an .
STE environment since a facility suitable for REVS color: graph1cs would meet
PERCAM requ1rements

40

Ly

COMPONENT 1§
LIBRARY

SIMJLATION y
COPONENT] ‘
SPECIFICATIONS | RERCM &
POST PROCESSOR il
INPUTS (£¥ERT—————3%' :
DES{GNATORS)
» \
CONSTRUCTED
" SIMULATOR |

— —— E— g—— Sty

3
TAPF 3 -
SCERARTO
AR, COST
IRPUTS
ERCOUNTER
RESULTS

DISPLAY,

FADEO-010

}

/TAPE 1287 g
) A

- ATTACKER }

e § 8
HiSTORY /-

T TR mg

fe=———SCERARIO AND COST DATA

feg———COM¥POHENT DESCRIPTIONS

| LSSOR . '
REQUESTS ™} POST PROCLSSOR | ATTACKER/DEFENDER/TARGET
S EXECUTIVE e M _
APES - -
EVENT 1) TAPE12 : . SCENARIO
LIST (%' > . . SUMMARY
8E S :)
(=%
<<
- [nd
TIME/ __ ~ WEAPON
RAKGE KILL DECISION “RELEASE
SUMARY PROBABILITY COMOHLHT SULMARY
BAR cosT PATH EXECUTION :
CHART pATA FREQUENCY
SUMHARY

Figure 2-6 User and

Simulator Data Inp.t Summary

2.3.3 Current Installations

The PERCAM software was originally implemented on the CDC 7600 and has
been used on a variety of CDC 6600 and Cyber series systems. It has also
been made operational on both DEC VAX 11/780 and UNIVAC 1100 series computers.
It is easily transportable to any computer meeting the software env1ronment
requirements of the next paragraph.

2.3.4 PERCAM Software Environment Requirements’

While PERCAM is often used in conjunction with specialized simulation
languages (e.g., COMO, SALSIM) we will not require support of those languages
for a basic capability. A1l that is needed to achieve a PERCAM environment
is a suitable extended FORTRAN IV (FORTRAN 66) compiler and specific system
utilities as_ itemized.in the following subparagraphs. Future color graphics
requ1rements can be met within the REVS graphics requ1rements

- 2.3.4.1 Requ1red FORTRAN Language Extensions

8 - Add1t1ona1 characters for the FORTRAN Character Set are requ1red
: as' special :characters to the Preprocessor. These are used to
-inform the Preprocessor of parameter substitution names and of
T1teraT character strings. ' _

- S1ngTe quote (') in add1t1on ‘to the FORTRAN doubTe quote (“).
- The Less than character (<). ' T
- The Greater than character (>).

) NameT1st I/O. NameT1st I/O is a rion - standard FORTRAN feature
. This non-standard extension may not be the same on,;different
host systems. Namelist I/0.is required for the convenience of
~changing identifier names SImpTy by specifying the name and the
value 'to be replaced. " This.is used very heavily in PERCAM for
revising initial conditions, probab111t1es, and other types
of operat1ons T

2.3.4.2 Required System Utilities =

PERCAM requires the foTTow1ng system ut1T1t1es, in add1t1on to the
FORTRAN comp1T1ng system:

e ort/Merge A Sort/Merge package for the host system must be
. callable by FORTRAN. This capability is requ1red for the sort-
1ng done in building the table data summar1es of the Post-
processor

@ CALCOMP: Plotting. The CALCOMP basic HTot routines or equivalent
are required for PERCAM outputs. '

42

¢ Multiple Job Sequence.. The job control language of the host
system must provide for multiple job step execution. A typical
PERCAM run executes in the following order 1n one job stream.

- Library Processor (LIBLD).
- Preprocessor (PREPRO)

- FORTRAN Compiler

- Loader

- FORTRAN Simulation

- ‘Execution

- Post-Processor.

" Thus, multi-phase processing must -be provided by the host system'
The user must be able to execute the sequence- 1n fu?? or in incre-
ments during any one run.

@ Check-Point Restart. For very large scenarios involving 1engthy
run times it is desirable to save data at intermediate check- - -
points sufficient for the run to be restarted at the last check-
point prior to host system failure. This ensures that Tengthy
reruns would be unnecessary. While this feature is useful for
theater-wide air defense modeling, we do not envision it as
necessary for the near-term STE unless the host . slowdown factor

" relative to current installations is large.

2.4 AUTOIDEF*

AUTOIDEF is an interactive graphics tool which provides a means of =
designing in the ICAM Definition Method (IDEF). AUTOIDEF is being developed
by Boeing Computer Services Company (BCS) under contract to SofTech, Inc. ‘

AUTOIDEF is designed to provide users with a computer-supported means of
graphically representing the activities, data constraints, and dependencies
in a -manufacturing architecture. Phase 1 of the three-phase AUTOIDEF project
provides for the .design of IDEF diagram construction and limited editing
according to a user's set of specifications, and includes the capability of
viewing or plotting any IDEF diagram following its construction. AUTOIDEF.
users will be able to save diagrams and entire data bases, and recall them at
a later time. The Build 1 version of AUTOIDEF also enables the user to per-
form the administrative functions necessary to establish new projects and ‘to
specify new authors and users. Build 2 will result in a complete diagram
jnput, editing, and display capability, as well as model creation and display
capabilities and project management support. Build 3 will yield a set of
model analysis tools, information extract1on too]s, and a]ternate format
presentat1on tools. '

*Note: Information and illustrations in these sections have been excerpted.
and adapted from ICAM project documentation provided in part by Boeing
Computer Services, Tukwilla, Washington.

43

It should further be understood that IDEF is an evolving methodology.
[t is expected that some revision will be made, and that the correspond1ng
rev1s1ons to the too1s Will be made prior to Build 3.

Figure 2- 7 illustrates a typical IDEF diagram. The-allowable d1agram
structures and relationships dictate @ graphics mode of diagram definition.
Since multiple arcs may originate or terminate at box boundaries, and arcs
may fork or join in complex ways, specification of a diagram requires de-
tailed description of graphic coordinates. Entry of descriptions via input
cards would be either tedious and impractical, or would constrain the allow-
able structure to a limited set.:

2.4.1 AUTOIDEF Software

The structure of AUTOIDEF Build 1 software consists of eleven distinct
~functional components as shown in-Figure 2-8. The 1mp1emented software has
" been modularized to enforce these functional boundaries.- The overall archi-
tecture is expected to remain constant in Build 2. -The following subpara—
graphs prov1de funct1ona1 descr1pt1ons of each component.

2.4;1.1 AUTOIDEF-Execut1ve

The AUTOIDEF 'Executive component controls the entire system. It is
responsible for scheduling and invoking the Administrative Functions and
Diagram ‘Executive/User Interface components. Depending on the user's needs
the Executive will invoke one of-these subordinate components and, for the
Diagram Executive, will also initialize the use of a graphics: term1na1 When
interfacing with the AUTOIDEF Executive, the user can perform administrative
functions, such as specifying authors and additional users, using any key-
board term1na1 _

‘The AUTOIDEF Executive determines the- opt1ons available to a given user.
It monitors thé use of IDEF diagrams to ensure that only those diagrams for =
Awhwch the user is an author or specified user are accessible. '

_2 4 1 2 Adm1n1strat1ve Funct1ons ‘

An AUTOIDEF user has a cho1ce of several functions through the Adm1n1s-
trat1ve Functions component, consistent with his access authorization.” For
Build 1, these administrative functions are: create a new author, specify
‘additiona] users, and delete a diagram. According to the IDEF conceptual
schema, entities are either created or deleted from the data base depending
upon the funct1on

2. 4. 1 3 D1agram Execut1ve/User Interface

A user entérs the Diagram Execut1ve/User Inﬁerface component to d1sp1ay,
plot, create, or edit an IDEF diagram. The user is presented with options via
a menu selection interface and interacts with AUTOIDEF by making a choice.

The Diagram Executive/User Interface component interfaces with a graphics
terminal once initialization is performed by the AUTOIDEF Executive. The _
component then -interfaces with the Diagram Transfer and Diagram Manipulation
components to perform the activity selected by the user. The Build 1 AUTOIDEF

44

Sy

DIRECTIVES/ |-
REPORTS .

SYSTEM REQUIREMENTS,
D!RECTIVES& REPORTS

Cc3 IVANUFACTUPIN" CAPABILITY IN"OR'VIATION

o &
PRODUL,T RH’ORTS? .

v

11; PROTOTY?E /MODELS

" DEVELOP
CONCEPTUAL
' DESIGN
. : M

©)

@

Al
BASELINE .

© CONFIGURATION” @

oW ¥ Vo BASELINE

PERFORM -

DETALL DESIGN
SOM

" DRAWINGS
PARTS GEOMETRY

" PRODUCT SCHEDULE
MATERIALS LIST
PARTS LISTS :
MASTER DIMENSIONS

. SUBSYSTEM LAYOUTS .
WIRE LIST CONTROL
PARTS PROGRAM N/C- .

~ O'\'A’\IUFACTURNGINFORMATlON)

PRELIMINARY

DESIGN |
REQUIREMENT

LOGISTIC -

CONSIDERATIONS

BASELINE CONFIGURATION SELECTION,

SYSTEM REQUIREMENTS, :
'METHODS, CONCEPTS; PROGRAM

REQUIREMENTS, DATA (SIZING,
CWEIGHT, LOADS, PERFORMANCE) ’

OPTIMUM CONFIGURATION,
ENGINFERING DRAWINGS, DESIGN

" REQUIREMENT BASELINE, WEAPCN:
SYSTEMS EFFECTIVENESS, MISSION
" DATA

INCREASED SCOPE FOR@A 30VE
SCHEDULES, SPECIFICATIONS,
TEST PLANS, COST DATA.

‘DESIGN .

~ PRODUCTION

. OPTIMIZED PEELIMINARY
CONFIGURATION

o~

p 03

L]

@

DESIGN DRAWINGS o

o o1
G INFORMATION/PLA'\JNNG

. be V“-'OP j}TAA*4urAfTuR|N
DETAIL . 2
DESIEN _ ®
. Ty . .
_3fe)
“A3
CHANGES OR
REDESIGN:

"~ INOTE:

FVvz/n0 -

TITLE;

DESIGN PRODUCT

NUMBER:

330

Figure 2-7 Example

IDEF Diagri.a

"RAD80-001.1

ADMINISTRATIVE
FUNCTIONS

AUTOIDEF
EXECUTIVE

IDEF
DATA BASE
MODULES

IDEF
. DBMS

IDEF :
DATA BASE

DIAGRAM EXECUTIVE/
USER INTERFACE

DIAGRAM TRANSFER |

DIAGRAM" MANIPULAT ION

- " MODULES { - MODULES.
| erapnics -1 @ | erapncs
‘|- DATA BASE DISPLAY
_ MODULES | MODULES | -
:
GRAPHICS GRAPHICS
- DBMS PACKAGE

GRAPHICS |
DATA BASE

46

_TERMINAL

_ Figure 2-8 - AUTOIDEF System Overview

O GRaPHICS |

Diagram Execut1ve/User Interface component is based upon the menu - structure
of the AIDSZ Staging system.

-2.4.1.4° Diagram Manipulation

The Diagram Manipulation component performs the graphical -manipulation
of an IDEF diagram. The manipulation routines are of three types: diagram
construction, diagram display, and plot diagram. Diagram construction allows
a user to manipulate either an existing or a new diagram by performing such
functions as add N boxes, add an arrow segment,. add an ICAM code, or add an
arrow segment label. Diagram display and plot diagram generate either a

~screen display or a hardcopy plot of an IDEF diagram. The Diagram Manipula-
tion component is invoked by the Diagram Executive/User Interface component
and in turn must interface with both the Graphics Display and Graph1cs Data
Base components :

2.4:1.5 Diagram Transfers

The AUTOIDEF Diagram Transfer component controls the transfer of informa-
tion between the graphics data base and the IDEF data base. The transfer pro-
cess is based on the IDEF conceptual schema deve]oped dur1ng preliminary de-
sign of AUTOIDEF.. IDEF diagram information is passed from the IDEF data base
to the graphics data base when a user desires to perform diagram manipulation.
For a new diagram, only author and project information is transferred; for
editing an existing_diagram, all pertinent information concerning the dia-
gram's related entities is transferred to the graphics data base. Once a
diagram has been displayed, plotted, created, or edited in.the graphics of
AUTOIDEF, the.information is returned to the IDEF data base by the Diagram
Transfer component. : A : _

The Diagram Transfer interfaces with both the IDEF_and Graphics Data‘
Base components to accomplish the transfer process. The Diagram Manipu]ation
- component is responsible for 1nvok1ng the Diagram Transfer component moving
of the diagram information. _ :

2.4.1.6 IDEF Data Base

: The IDEF Data Base component has two levels of capabilities. The first-
level data base routines make use of the IDEF conceptual schema designed

~ during the preliminary investigation.. The conceptual schema is then trans-
lated into an implementation schema by both Level 1 and Level 2 data base
routines. The IDEF data base implementation schema is based upon a CODASYL
structure used by ADBMS**, the current IDEF DBMS. The -Togical data base
structure maintained by ADBMS is compatible with the entities, attributes,

*AIDS is an interactive graphics-based system deve]oped at Battelle- Co]umbus
to help in the preliminary design of aircraft. The User Interface, Graphics,
and Data Base routines are being used in support o AUTOIDEF.

**ADBMS means "A Data Base Management System". It was developed by the Un1ver-
sity of Michigan ISDOS project, based on DBTG71 CODASYL model. The current
IDEF DBMS uses ADBMS Version 3. The REVS DBMS was adapted from ADBMS Ver-
sion 2.

47

and relations that support-the IDEF methodology. The IDEF data base implemen-
tation schema is used by ADBMS to perform the physical processing necessary to
-automate the IDEF methodology. Both Levels 1 and 2 routines are designed with
generalized interfaces. Level 1 interfaces with both the Diagram Transfer and
the Administrative function components through an interface based on the con-
ceptual schema. Level.2 is then used to format and control ADBMS routines in
order:to accomp11sh conceptua] requests based upon the current 1mp1ementat1on
schema : :

2;4=1 7 IDEF Data Base" Manaqement System

ADBMS the current IDEF DBMS presents a genera11zed data base structure
based on a CODASYL schema. -The CODASYL schema is translated to meet the needs
of the IDEF methodo]ogy resulting in the IDEF data base implementation schema.
The implementation schema is then used by the IDEF data base modules to re-
spond to user requests from other AUTOIDEF components. To the DBMS, the im-
plementation schema represents the logical structure of the data. This logi-
“cal structure is used to perform the actual physical access of data. The
physical structure of ‘the data is un1mportant to any of the AUTOIDEF compo-
'nents other than the IDEF DBMS. component

2 4 1. 8 Graph1cs Data Base

Fhe Graph1cs Data Base component is similar to the IDEF Data Base compo-
nent. "It makes use of -both a-conceptual and an implementation schema by
separating the module into two levels. The conceptual schema is an extraction
of the IDEF conceptual schema and represents only the entities related to a
given diagram. The implementation schema is based upon the logical structure
maintained by the AIDS-Staging system rather than ADBMS in the IDEF data base
implementation schema. Again, a transformation process is responsible for
interpreting the conceptua] schema to the-implementation schema. The imple-
" mentation schema is then used by the Graphics DBMS to perform the actual
physical accessing of the data.. The Graphics Data Base component interfaces
directly with the graphics DBMS through the implementation schema and also
interfaces with the Diagram Transfer component and Diagram Manipulation
component by using the conceptual schema. -

2.4.1.9 Graph1cs DBMS

The ATDS- Stag1ng system is the current graph1cs DBMS in AUTOIDEF AIDS
uses a leveled logical data base structure -that is-tailored to the IDEF metho-
dology to become the implementation schema. The Graphics DBMS is responsible
for manipulating this implementation schema to physically access the data
relevant to an IDEF diagram. Only the Graphics DBMS needs to have knowledge
of the algorithms and structures necessary to perform the actual physical
accessing. The Graphics DBMS interfaces only with the Graph1cs Data Base’
component through the Graph1cs 1mp1ementat1on schema.

48

2.4.1.10 Graphics Display

The Graphics Display component has three major functional capabilities:
generalized entity descriptions, verification and monitoring of the AUTOIDEF
screen display, and interfacing with the Diagram Manipulation component and
the Graphics Package. The entity description function is used by AUTOIDEF
to make the display of an IDEF diagram more efficient. Several data items
are maintained to describe the dimensions of boxes, the IDEF form, and Tloca-
tions of identification information fields. The Graphics Display component
also verifies and monitors the current contents of the graphics screen so
that the construction of IDEF diagrams is valid. The screen verification
process ensures that arrows do not cross boxes, boxes -do not overlap other
boxes, and arrow segments are gapped when they .cross -labels. The Graphics
Display component interfaces with both the Diagram Manipulation and the Gra-
ph1cs Package components. The interface to the Diagram Manipulation component
is structured around the following subfunctions: open a display segment,
display text or lines, and close the display segment. The Tow-Tevel interface
- performs the same functions but also includes a mapping to-core graphics.

S 2.4.1.01 Graohics Package

The major purpose. of the graphics package is to maintain a graphics dis-
play file that represents an IDEF diagram. The graphics package, AIDS-Inter-
tek, is responsible for creating, deleting and maintaining the display file.
The AUTOIDEF graphics package interface is mappéd to meet core graphics stan-
dards, which can be used on many .graphics packages. The graphics .display file
“is used both 1in disp]aying an IDEF diagram and in plotting a diagram. The
only difference in the functions is the output device the d1sp1ay f11e is
d1rected to: graph1cs terminal or hardcopy p]otter :

2.4. 2 Current Installations ‘

The AUTOIDEF- system is currently installed on the CDC CYBERNET system
under. the NOS operating system. ‘Users throughout the country can access’
AUTOIDEF through 1oca1 CYBERNET concentrators. :

_ Eventua] rehost1ng of the - software is probab]e when the ICAM project

. progresses to the point of fielding a completely 1ntegrated set of tools.

With this in mind, AUTOIDEF has been designed for the maximum degree of port-
ability possible, consistent with its detailed capability requirements and
the requirement to initially host it on CDC CYBERNET equipment.

2.4.3 AUTOIDEF Software Env1ronment Requ1rements

The subparagraphs be]ow summar1ze software environment requ1rements as
jdentified from currently available AUTOIDEF documentation. ‘Future bu11ds of
. AUTOIDEF are not believed to involve additional requirements..

49

2.4, 3. T FORTRAN Language Extensions

, " The AUTOIDEF software and its externally-furnished support1ng packages
are stated to be in-conformance with the ANSI FORTRAN 77 standard except for
certain identified -déeviations, most of which seem reTated ‘tdo the CDC environ-
ment and-are well confined to specific submodules. ~The only - -major deviation
involves use of MASK, SHIFT, ENCODE, ‘and DECODE funct1ons These must be

prov1ded 1n the STE env1ronment to avoid rework of AUTOIDEF ' :

In add1t1on to use of the- funct1ons above AUTOIDEF may dev1ate from the
oner ANSI FORTRAN 66 standard in the foTIow1ng

'~j é_ Operand confT1cts in ar1thmet1c statements
o Use of T1tera1s 1nstead of HoITer1th data
”6- Use of ENTRY statements

ATthough the DBMS from the Un1vers1ty of M1ch1gan qs cTa1med to’ be in -
A‘ANSI FORTRAN, it supports random access I/0 which is a deviation from the
FORTRAN 66 standard (and is specified in the FORTRAN ‘77-standard in a-manner
that deviates from most known implementations). ' A candidate STE host must
support FORTRAN random access 1/0. The’ 1mp1ementat1on on each candidate
system must be -evaluated to determ1ne compat|b111ty as there are often undocu—
mented var1at1ons between machines.

2. 4 3 2 AssembTy Languages

The AUTOIDEF documentat1on states that one’ rout1ne in the AIDS exe-
cutive is written in COMPASS :(CDC Assembly language). This routine will have
to be rewr1tten in either host assembTy Tanguage or HOL for non- CDC mach1nes

2.4.3. 3 Character Set

Due -to T1m1tat1ons of the’ CDC NOS operat1ng system AUTOIDEF users are-
currently; 1imited to the ASCII 64 character set’(upper case). However:, the
original AUTOIDEF requirements state that it is desirable that the full 96
character' ASCII chardcter set be available. The STE hdst should: provide the
96 character set, but the 64 character set would be acceptabTe 1f other con-
s1derat1ons favor seTect1on of a part1cuTar mach1ne

2.4.3.4 Memory Management

As with REVS, in the CDC environment AUTOIDEF uses the "CDC. segmented”
Toader to minimize the use of main memory during execution. AUTOIDEF is
designed ‘to allow Segments 1o larger than 25676 60-bit words each: (60K'octa1)
These segments are overlaid as necessary during program ‘execution. = Any over-
lay generation mechan1sm used:by the STE host must be transparent to the
application program. A virtual memory system is an acceptable alternative
to segmentation and overlays.

50

2.4.3.5 File Access

The original AUTOIDEF requirements specified that read/write access to
the data base be provided for multiple users simultaneously. The CDC NOS
operating system does not support access by more than one user at a time.

To work around this constraint, the designers chose to segment the data base
among multiple physical files to provide data base access for multiple users.
-Each user may access only one file for read/write operations. No two users
can access the same file concurrently for write operations. To support this
mechanism, the STE host must allow AUTOIDEF to dynamically attach, open, close,
and release files during program execution, in response to user command.

2.4.3.6 Alternate Graphics Packages.

BCS states that other graphics software packages may be substituted for
the AIDS-Intertek FORTRAN package currently used if they provide the functions
"provided in the Core graphics mapping" (defined in an appendix not included
with our documentation). We presume this implies compatibility with. the Core
System, a graphics standard developed by the ACM/SIGGRAPH.Graphics Standards
- Planning Committee (see ACM Computing Surveys, Volume 10 No. 4, December 1978
for a discussion of the Core System).

2.5 GENERAL SOFTWARE ENVIRONMENT REQUIREMENTS

This paragraph addresses softwake'environment cépab111t1es needed for the
STE independent of the specific tools. These features are characteristic of
any effective development environment. :)

2.5.1 Source Library Control Requirements

Because of the size and complexity of the REVS and AUTOIDEF systems,
some means of source library control must be provided. -An operating source
library system must: . :

e Logically group source modules. _ :
¢ Provide a method of source updating to. include an audit traTT ‘

@ Provide a means for maintaining d1fferent software versions for
different site var1at1ons

REVS currently uses a source Tibrary system on the CDC. Unfortunately, the
CDC UPDATE program is not machine-independent, it is applicable only for CDC
'sites. The CDC UPDATE provides a proper audit trail so that previous addi-
tions can be identified, and updates are accomplished in a non-destructive
mode. Finally, the CDC UPDATE system logically groups the source modules of
the application system. Two approaches for source 1ibrary control are pos-
sible. Either the host computer's library system can be used or a "portable"
system (i.e., dependent only on character set standards, such as ASCII) can
be used. .

51

2.5.2 Data Entty Requirements

The STE must effectively support data file creation, editing, update,
and. deletion operations in both batch and on-line modes. This support must
be independent of the hosted tools. The separate files must be mergeable and
attachable to execution jobs. o :

2.5. 3"Oh—L1ne\Respohse'Ttme Support

The STE host operat1ng system must be capable of supporting-a 1 to 4

' _second reaction time to local on-line jobs. This means direct or indirect

acknowledgement of a request from an on-line terminal, and not necessarily
completion of the requested action. (This reaction time is generally consi-
dered adequate for interactive systems [8]). This response time must be
supported in a multi-user env1ronment (up to six, but nominally two or three
STE users).: : . 3 S

- 2.5.4 Communieatﬁons Support

Fhe STE systems software must be capable of serv1c1ng up to Six communi-
: cat1on Tines from-either local or remote terminals at transmission rates up to
at least 4800 baud (9600 baud preferred).

52

3.0 HARDIARE RESOURCE REQUIREMENTS

- The paragraphs of this section discuss the hardware resources necessary
to support REVS, PERCAM, and AUTOIDEF. Of the three, REVS and AUTOIDEF
appear to set the pacing requirements for an STE facility. The needs of
PERCAM are easily met within this framework. In the final paragraph of
this section, we discuss general .issues in STE hardware selection.

- 3.1 RECVS RESOURCE REQUIREMENTS

REVS was originally developed for the TI-ASC and rehosted on the CDC
7600. Subsequent improvements in performance -have enabled practical installa-
tions on slower CDC Cyber 170 series machines. . Currently, REVS is being
rehosted on a yet slower machine, the DEC VAX 11/780. This paragraph de-
scribes REVS resource requ1rements for the STE env1ronment based on past
and current exper1ence

- 3.1.1 CPU Sgeed

The basic CPU speed of a candidate STE configuration is only one aspect
of potential REVS performance, to be considered concurrently with primary
memory. size, I/0 transfer efficiency, total cost, and user demand. There-
fore, we will set no specific CPU speed requirement, but will discuss REVS
. performance in terms of "slowdown" relative to current installations.

The fastest version of REVS is on the CDC 7600 at the BMDATC ARC. Most
REVS runs use less than 30 CPU seconds on this machine, with 8 to 20 seconds
a typical value for experimental exercises of ‘the type probab]y prevalent
at the STE during the R&D per1od

v To explore the 'maximum re]at1ve”s1owdown value, however, we should

consider the -longest runs that may be required at the STE. One such run
is the creation of the REVS load module itself, during the installation
- phase (see Table 4.1 in the next section). This is the second longest
single run in the installation phase, and uses about 120 CPU seconds on
the CDC 7600.

- The Tongest run in the 1nsta11at1on phase is a test case that uses

192 CPU seconds. This case involves the creation and listing.of a complete
data base for an. air defense system. It is a realistic representation of

“1arge scale" software requ1rements engineering problem and uses the
max1mum LCM allowance at the ARC. " A larger data base at the ARC would
‘require paging from disk. Few REVS data bases will reach this size. 'Al-
though not mandatory, any data bases that exceed this size would generally
be partitioned into smaller data bases for division of labor and management
resources. Of the 192 CPU seconds, 131 were required to create the data
base from card images, and 55 seconds .were required to 1ist it. The remaining
~six ‘seconds were for REVS and system setup and termination activity. The
run produced nearly 24,000 11nes of output, and used over 10 000 card images
for input.

The same test case:required 1064 .seconds to execute on the TRW Time
Sharing System (TSS) Cyber 174 configuration. The data base creation (trans-
lation) time was rough]y 759 CP seconds while the listing time was approxi-
mate]y 305 CP seconds This is.a;slowdown of-about 5.5:1 relative to the
7600. ¢ o) o S R e BN

An add1t1ona1 order of magn1tude s]owdown (1 €., 55 1 re]at1ve to- the
. 7600) would mean that this .run would execute’ in about thrée hours. Produc-'
tion of a REVS load module would take about 110 minutes. Execution of the
REVS verification test cases would take about four:hours:and- 40 minutes. "
Most typical REVS run$ would be in the seven to eighteen minute range. For
future STE candidate evaluation purposes; a 55:1 slowdown would:seem- to be
-:a maximum-outer-1imit, but only-for an STE-dedicated-facility:. The central
issues would be cost and the ab1]1ty to meet overa11 da11y needs w1th1n th1s
Timit. ‘ : Lo - AR

fcertainly ih a shareddtaciltty, sUch as‘an extsting‘ARPANET hode,ta‘55:1
ratio would be unacceptable as it would deny the node to other users. Here,

ratios in the range of 5:1 to 12:1 would be more practical, subject to avail-
ab111ty cons1derat1ons

3. 1 2. Pr1mary Storage .

The “sma]]est" 1nsta11at1on of REVS to date has been on . the. "B" mach1ne
at the Naval Air- Deve]opment Center. (NADC). This:configuration is-considered
to be very limited in performance and does not include interactive graphics.
This version requ1red 1300008 CM (centra] memory) 60 bit words: to execute

w1th an add1t1ona1 1440008 words of ECS (Extended Core Storaqe == essent1a11y

fast d1sk) CIf we ‘were to cons1der a11 of this ‘to-be primary memory, we.can
assume that 0.8 Mbytes would afford a very limited REVS configuration that
would "be totally unacceptable with_CPUs. significantly slower than: CDC.Cyber
175's. The configuration on the NADC "C" machine is..equivalent to 1.45 Mbytes
and is -considered a "good" configuration. .. The best..configuration is at -the
BMDATC ARC: "It is=equivalent to 1.5 Mbytes, :but requires less I/0 activity
~and is more efficient because up to 128 Kwords (~ 1-Mbyte) of user’data base
is stored in Large Core Memory (LCM) which is ‘considerably faster’ than ECS.-
A11 of these versions utilize code overlays to minimize the amount of REVS
software in-core. If we "unrolled" the code; for instance:to allow multi-
user. reentrant access, and maintained. it in‘primary memory, about 1.5 Mbytes
would be.needed for REVS software.with additional requirements for user data
base space. Mak1ng allowance for four concurrent users.we could: v1sua11ze .
a very fast vers1on of REVS w1th 4 to 6 Mbytes of pr1mary memory :

However we be11eve that apprOX|mate1y 2 Mbytes is a deS1rab1e ;primary
storage- f1gure for the .STE that would support-further:REVS performance trade-
offs ‘and allow margin for other host system functions as-well as future:tool
~growth. As Tittle as 1 Mbyté might be acceptable if:I/0 transfer was ex- -
tremely efficient. Accordingly, we will. set a cut off thresho]d at 1 Mbyte
for.potential STE candidate . hosts o Lo A _

54

To illustrate the impact of primary memory limitations on 1/0 transfers,
we will cite the air defense example mentioned in 3.1.1. The data base for
this system is about 1.7 Mbytes. On the CDC 7600 at the BMDATC ARC, virtually
all of this data base is contained in LCM. On the TRW TSS Cyber configura-
tion, only a fraction of the-data is in central memory. For the test case
previously cited, I/0 activity at the ARC was 7.4 Mbytes, while on TSS it
Teaped to 1063 Mbytes. Because of the long execution time on TSS, much of this
activity was undoubtedly also due to job swapping. _ .

3.1.3 Mass Storage

The STE production environment must allow for REVS software files,
object code mass storage, plus adequate allowance for active and archived
user data bases.. Table 3.1 shows a breakdown of the minimum production phase
mass storage for the REVS software and ancillary files (3.35 Mbytes). To -
this should be added space for up to six active prOJects and ten arch1ved
projects. , ~

REVS project data bases vary considerably in final size, and of course
vary in size during development. One of the larger data bases we have
developed so far, for the air defense system mentioned previously, is about
1.1 Mbyte in size. While many data bases for operational systems might
reach that size, experimental data bases (and those for most systems) are
genera]]y more compact. The assumpt1on of a 0. 5 Mbyte finai data base s1ze
is realistic. for mass storage sizing. ,

In pract1ce, it has ‘been found that an active mass storage allocation
of about five times the existing data base size is desirable during the
early phases of a project with a reduction to three times data base size
permissible as the data base nears completion. However, allowance must be
made for storage of simulators and post-processors when they are used. We,
thus, are recommending that the minimum allocation be maintained at five ,
times data base size throughout the project for STE purposes. This provides
adequate room for creation of new data base versions and retent1on of selected
previous data base versions.

Conservat1ve1y using -a 0.5 Mbyte size and mu1t1p1y1ng by 5, the average
project allowance should be 2.5 Mbytes. Allowing for sixteen data bases (six
active projects, ten inactive) yields a minimum mass storage allowance of
43.35 Mbytes, after adding in the 3.35 Mbytes for REVS software. Additional
allowance must be made for user I/0 files and host system needs. .

During installation of the REVS 12 Mbytes of mass storage is needed for
the software, as shown in Table 3.2. Installation of a modified REVS con-
current with production use of a previous version could require up to 12
Mbytes over the production needs estimated abowe.

Finally, if the STE is to be used for further development and modifi-
cation of REVS concurrent with production use and evaluation, extra mass
storage allowance must be made for a REVS development phase. At most, this
would be twice the installation allowance plus 20 percent, or 29 Mbytes, but
could be as low as 15 Mbytes. For estimation purposes, we will use the higher
number. ' o

55

'RAD80-016

Tab]e’3.]

For REVS Software

Product1on Phase Mass Storage F11es

*(APPROXIMATELY 3.35 MBYTES)

FILE CDC 60-BIT
‘ “WORDS
TRW REVS 7600 SYSTEM 103,102
‘@ PASCAL LIBRARY
‘@ PASCAL COMPILER
‘e~ NESTER
© DATA BASE LIBRARY \
REVS 200 277,929
e SEGMENTED CODE OF REVS SYSTEM
L S 2,703
o EMPTY SIMULATION DATA BASE ‘
st 156
‘e SIMULATION DATA'BASE TABLE o
 ASSMDBRSL HUCLEUS 13,566
6 NOMINAL'INITIAL RSL DATA'BASE
. ASSMDBT 823
" 1@ RSL DATA BASE TABLE i
© DONNEES - , - 7,852
o “RL TRANSLATOR INITIALIZATION‘.,, :
RISF 7,080
@ CODE PIECES FOR SIMULATOR
 VWOBLOR 32,870
" e SIMULATION DATA BASE BUILDER ‘
TOTAL 446,081% .

. 56

RADB0-015 .

Table 3.2 Installation Phase Mass Storage Files

For REVS Software

FILE €DC 60-BIT
: - WORDS
CWSPC : © 59,395
‘o COMPILER WRITING SYSTEM SOURCE |
PASCAL- SOURCE 7600 69,437
o PASCAL COMPILER & LIBRARY"SOURCE
REVSCDCSOURCE - 2%(308040) 616,080
o REVS SOURCE - 1
o TWO COPIES REQUIRED FOR CHS UPDATE |
REVSDBCSSOURCE - _ 38,882
o SOURCE OF DATA BASE CONTROL SYSTEM -
REVSTESTCASES" 82,992
e REVS RSL TEST CASES
ASSMDB © 2,703
o EMPTY ASSM DATA BASE
PLIB 46,701
@ PASCAL LIBRARY '
REVSDBCSL1B 51,224
o DBCS LIBRARY o
REVSLIB 56,242
o REVS OBJECT CODE LIBRARY
REVSMAC 3,557
e REVS J0B CONTROL' PROGRAM
VVLIBE . , 4,240
o TEMP OBJECT LIBRARY . o '
T SUBTOTAL 1,031,453
PRODUCTION FILES FROM TABLE 3.1 446,081
TOTAL 1,477,574*

*(APPROXIMATELY 12 MBYTES)

57

Thus, the STE should provide for 72 Mbytes (43 + 20) of mass storage
associated with REVS development and use, with-additional allowance for user
I1/0 files and host system needs. The latter must be assessed for the STE
as a whole, and in conjunction with evaluation of the STE candidates.

3.1.4 REVS Interactive Color Graphics Requirements

Tn1s baragraph d1scusse§ the'curnent.REVS gnapnics“envdnbnment“and
interfaces at the BMDATC ARC, and outlines co]or graph1cs support require-
ments for the STE.

3.1. 4‘1 ARC Graph1cs Sxﬁtem Hardware .

The ARC Graph1cs System consists of four interactive terminal sets
connected through special- purpose interface hardware and software to the
CDC 6400/7600 data processing system located in the ARC facility in Huntsville,
Alabama. Each terminal set includes a 19-inch color CRT, keyboard, and.
trackball positioned cursor. The system is supplemented.by a large screen
video projector and a black and white hard copy device. Terminal operation
is initiated and controlled by time-shared batch jobs executing in the CDC
6400/7600 computer: system. User access to the graphics terminals is sup-
ported by a package of FORTRAN callable subroutines that generate display
output commands and receive keyboard and trackball cursor inputs.

The majordnardware EOmponents of the ARC Graphics System are:

] Communjcatipns processor

@ Anagraph display system

® Large screen video projector

e Hard-copy unit.
The current ARC configuration is no longer commerdia]iy available. A modern
equivalent would be the Ramtek 9400 Graphics -Display System. A minimum price

option version supporting two terminals would cost between $50K and $100K
Such a system could support only 1oca1 on-site use. -

3.1.4,2 Proposed STE REVS Color Graph1cs Env1ronment Requirements ;

The STE should permit simultaneous connection, via local or remo*e
RS-232-C full duplex serial data -interface, of at least two interactive
color .graphics terminals at a Tine rate of 4800 baud or higher. The STE
graphics terminals should provide a serial RS-232-C full dup]ex interface
with user-selectable transmit/receive rates up to the maximum rate. .Each
terminal should provide an EIA-RS-330 closed-circuit television standard
interface for attachment of hard copy units/video monitors/video recorders.

The 'STE graphics terminals’ shou]d provide a display with 480 x 640
point resolution and should be capable of simultaneously displaying eight
distinct colors under application program control. Screen diagonal size
should be greater than or equal to 13 inches. :

58

The STE graphics terminals should provide sufficient memory to store
a full display of graphics data. Adequacy must be determined according to
the display definition requirements of the particular terminal as estimated
against REVS graphics display benchmarks (to be determined).

The display should support. the standard ASCII 96 upper case/lower case
character set at minimum. Graphics software provided by the vendor should
be capable of interfacing with FORTRAN or Pascal software residing on the
STE host computer. The graphics display should provide a user-steerable input
cursor, controlled by trackball, keys, or joystick and should allow for a]pha—
numeric data entry concurrent w1th graphic display.

Other desirable features to be eva]uated in the selection of a graph1cs
display terminal are: :
) Cost < $20K configured per requirements.

@ Additional user aids (e.g., ru11ng characters, patterns, forms/
data entry aids).

8 Support for geometr1c shapes and. special symbo]s
The STE graphics support peripherals “should 1nc1ude a video hardcopy
unit, capable of interfacing with mu1t1p1e graphics terminals,. to output
8-1/2 by 11 black and white hard copies of terminal d1sp1ays

3.1. 5 Plotter Hardware

REVS currently makes use of CALCOMP continuous'ro1] feed p1otters;'with
both 12 inch and 30 inch width paper at the BMDATC ARC. REVS produces a plot
input tape so that the plotters can be operated off Tine. .

The]arge-size plots are used as working drawings,fbut are generally
too large for inclusion in documentation. Plots on 12 inch paper (height)
can be used on fold-out pages, if not excessively wide, and on standard
. 8-1/2 by 11 pages for the majority of instances. Future REVS development
~will focus on making 8-1/2 by 11 mch plots more: 'leg1b]e and useful in '
. pub11cat1ons _

While the continuous-feed plotters and opt1ona1 30 1nch w1dth are
desirable features, they need not be mandatory for the STE. However, an
STE p]otter must produce at Teast 8-1/2 by 11.1inch p]ots and accept tape '
input in CALCOMP compat|b1e format.

3.1.6 ‘Card Reader/Alphanumeric CRT Terminals

. Inputs to REVS vary from a few card 1mages'up to 2000 card images under
. usual working conditions. The larger input sets dre used in the earlier
stages of data base construction.

With the trend to “cardless” data entry environmEnts, the card reader

is becoming more of an optional extra than a necessity. For the STE, this
is also true. REVS inputs can be handled directly from cards, indirectly

59

-via creation of input f11es using an anhanumer1c CRT terminal, or directly
via' the interactive graphics terminal. The STE should provide the capab111ty
to construct and edit 1nput files without having to invoke REVS. ’

The onTy real requ1rement on a card reader or CRT term1na1 for input,
is that it be able to accept standard 80-column_ card images -and transfer them
in a form acceptable to the selected STE host computer. In the case of CRT
terminals, the terminal should be able to display the same images. The full
ASCII 96 character set shoqu be supported ,

’“3;1 7" Tape Unit -

'REVS currently prepares CALCOMP pTot files on magnetic tape for offline
plotter input: A Tow speed tape unit is sufficient for this purpose and .
would aTso meet unspecified general utility needs for an STE.

3 1.8 L1ne Pr1nter

Current]y, at TRW- Huntsv111e, a 300 to 400 T1nes/m1nutes pr1nter is.used.
While this s a pract1ca1 maximum for use over a 4800 baud Tine, it is a
bottieneck when ‘multiple copies of longer output T1st1ngs are necessary. An
" on-site STE line printer should be 600 Tines/minute minimum. It should sup-
port-the ASCII' 96 character set to meet future deveTopment needs, but at.
least the 64 character set is mandatory

3.1.9 ExternaT Commun1cat1on

The STE" should support dial- -up communication. from remote s1tes, using

;{RS -232-C interfaces, with selectable Tline transmission rates up to at Teast

4800 baud. The ‘STE should support at Teast six input Tines, which can be

divided in any manner between local and remote use, and be easily recon-

. figured. This capability will be suff1c1ent for all three tools, REVS,
PERCAM and AUTOIDEF) , o

3.1 TO Interna] 1/0 Transfer

I/0 transfer rates sufficient for effective REVS® operat1on must be

: assessed in the context of CPU speed, primary memory size, and memory

- management strategy for each STE candidate machine. As d1scussed in 3.1.2,

i T1m1tat1ons on primary memory can ‘have a profound impact on 1/0 requ1rements

3.2 PERCAM RESOURCE REQUIREMENTS

The needs of PERCAM are generaTTy small compared to those of REVS and
AUTOIDEF. The exception may be in CPU speed where slower speeds will place
~ limits on Monte Carlo replication capabilities. .

3.2.1 " CPU Speed

s,‘As discussed in Paragraph 4.2, the execution time for a PERCAM run, for
~a given CPU speed, is a multiplicative function of the number of "attackers",
i number of "defenders", number of time steps, and comp]exity of the ELT logic.

.60

- For s1ng1e determ1n1st1c cases, typ1ca1 execution times are modest (on the
order of 20 to 60:CPU seconds on thé CDC 7600 and 1 to 5 m1nutes on “the CDC
6600). In the usual case of one or two runs per day, a 50:7 slowdown ratio
versus the CDC 7600 would be'.tolerable. However, for studies requiring up to
100 Monte Carlo replications, submitted at the rate of 5 to 10 per day mini-
mum, a slowdown of <10:1 would be desirable. For a given STE CPU speed, one .

. must accept 1|m1ts on,the scenario size and number of replications. Determi-
nation of an "acceptable" CPU speed requires detailed analysis of the modeling
needs of the particular user. For the STE, this can be gained only through
experience with PERCAM models of typ1ca1 STE app11cat1ons

#

3.2.2 Pr1mary Memory

PERCAM typ1ca11y executes in 80 to 100 Kbytes of memory. Working file
space 1is 1ess than 0.4 Mbytes. Thus, pr1mary memory requ1rements are not
s1qn1f1cant compared tQ_REVS

3.2.3 Mass Storage

The: standard PERCAM software (Library Builder, Preprocessor, Component
Library, and Post-processor) occupies less than 0.3 Mbytes. - Graphics soft-
ware occupies about 0.05 Mbytes. Working files are usually processed and not
saved. Therefore, 1 to 2 Mbytes allowance for temporary storage is generous,
-_and is 1ns1gn1f1cant with respect to tota1 STE requirements.

- 3.2.4 Graph1cs Hardware

' _ PERCAM needs can be- sat1sf1ed w1th1n the capab111t1es needed for either
. REVS or AUTOIDEF

-3.2.5 P]otter Hardware

A CALCOMP compat1b1e plotter produc1ng 8-1/2 by 11 inch plots (simpte
bar charts, h1stograms, and curves) 1s adequate for PERCAM use.

3 2.6 - Card Reader/Tape Un1t/L1ne Pr1nter

PERCAM input/output requ1rements are m1n1ma1 and can eas11y be satisfied
within the REVYS requirements. :

3.3 AUTOIDEF RESOURCE REQUIREMENTS-'

The requirements herein are tentative, based upon pretiminary informa-
tion, and subject to change downward.. As of this writing, Boeing Computer
Services is conducting a performance improvement program to increase the
. speed and efficiency of the prototype system.” Further information and
1mpacts of Build 2 will be noted in the STE F1na1\Report

- 3.3.1 CPU Speed

Because AUTOIDEF is an 1nteract1ve input system, CPU speed is but one
'component of total system performance A basic unit of accomplishment is

6

the construct1on of an IDEF d1agram On the current.Bui]d‘]'system;7this“sv
takes from 20 minutes.to 1.5 hours wall clock time. Average CPU timé on’

the Cyber 175 is about.60. seconds The- rough average ratio’of. wall clock =
time/CPU time is about 50:1, indicating that CPU Speed is not a bott]eneck
on the present system However, the overa11 system performance 1s s1ower

than des1rab1e

. We wou]d expect some performance 1mprovements to concentrate on- the -
DBMS software. From.our experience with a similar DBMS on REVS ‘we Found- -
that speed can be increased up to 100:1, but at a sacrifice of portab111ty
and generality. Of greater importance is the current use by requirement
of the Tektronix 4014 storage tube display terminal. Because storage tube. .
'displays cannot be se1ect1ve1y refreshed, the entire display must be re-
painted’ each t1re anyth1ng 1s changed Fh1s s]ows the performance of the
‘system. : ‘ -

We believe that AUTOIDEF could tolerate at 1east a 5:1 s1owdown re]a—
tive to the Cyber 175 (i.e., about 30:1 relative to a CDC_7600), and perhaps
- more, provided software and display efficiencies are suitably increased.
Ana]ys1s of the’ to1erab1e s1owdown must’ be done for each cand1date STE
conf1gurat1on o I : St

3 3.2 Pr1marx4Memorx

Present estimates for the Cyber 175 conf1gurat1on are]70000 CDC 60 b1t _
!words for program space and 300008 words for data area. Th1s wou]d 1mp1y '

a ‘minimam of 0.6 Mbytes of primary - storage must be ava11ab1e to the user _

3.3 3 Mass Storage

. The current, data we have 1nd1cates a 50 Mword d1sk a]lowance for a
large manufacturing environment proaect "This translates to abolt.-400 Mbytes.
- AUTOIDEF presumes that all previous’ versions of material in-the data base -
: Will be retained. A more appropriate allowance for the STE might be 5 to 10
, Mbytes per "project" with an allowance for four active projects and 10«
; archived projects. Approx1mate1y 115 Mbytes should be suff1c1ent for user
* files, 'source code storage and object code storage R

3.3.4 Graphics Hardware

. Currently, AUTOIDEF is required to support the Tektronwx 4014 1 Graph1cs
D1sp1ay Unit" (storage tube type): with input via ‘the Tektronix’ 4953 Graph1cs
Tablet. This s to be compat1b1e with cuirrent CYBERNET equipment.: Depen—'
dencies on the Tektronix 4014 are Timited to the user interface funct1ons
of AUTOIDEF. They are ‘not’ unique to ‘the 4014, but apply to’any’ graph1cs
terminal configured with a storage tube. -BCS has made: design provisions.:
for eventual transfer to a refresh type terminal.

62

The funct1ons that depend on a storage tube are of two types -- both con-
cerned with the user input method. The first is the display of the menu
options and the necessity for redisplaying the entire screen when the menu
area is full. Secondly, input of box name and number of small boxes are
entered in the Tower area of :the screen to avoid the extraneous information
necessary to prompt for the text in the IDEF form message f1e1d

More genera] requ1rements imposed-on AUTOIDEF as stated as fo]]ows

e "It is desirable that the IDEF too] prov1de a graph1cs data
" base resolution (i.e., the minimum number of-addressable
points) of at Teast 32,768 points in each direction. The
graphics ‘display must have a reso]ut1on of at 1east 1024
points over 15 inches on a‘single axis.

@ "The IDEF form shall be displayed at_1ts actual size or
- reasonably close. The full size of the form is 10.0 inches
wide and 7.0 inches high. The message field for the IDEF
diagram is 6.0 inches by 10.0 inches. The clerical infor-
mation at the top and bottom of the IDEF form should be
displayed (10.0 inches wide by 0.7 inches high at the top,
10.0 inches wide by 0.4 inches high at the bottom)."

-Re1axat10n of these requirements may be possib]etin the STE. There
is no current AUTOIDEF requirement for color display.

3.3.5 Plotter Hardware

AUTOIDEF is currently supported by a CALCOMP plotter. Any equivalent
plotter supporting basic CALCOMP software interfaces and producing 8-1/2
x 11 inch plots of equal quality would suffice. Off—]ine support via tape
input is satisfactory. : :

3.3.6 Card Reader/Tape Unit/Line Printer

As AUTOIDEF is basically a graphics input/output tool, there are no
specific requirements for other peripherals. However, these may have a role
in installation and maintenance, and a tape unit would be needed for off-line
plotting. Any of these peripheral needs are satisfied within the REVS hard-
ware requirements.

3.4 STE HARDWARE SELECTION CONSIDERATIONS

In the future evaluation of candidate machines to meet STE needs, it.
is 1mportant to remember that maximum performance is not the goal. The ob-
jective is to define the most economical and ba]agced system that can handle
the ant1c1pated user load effectively during the R&D phase, and be later

63

deployed for production use. In the case of current ARPANET machines, avail-
abiTity (i.e., percent capability effectively open for STE use) is also a
maJor cons1derat1on

“In Tater operat1ona1 use, the se]ected conf1gurat1on must be accessible
by users and responsive within their schedule requirements. Hence, the pro-
Jected user load profiles and STE time-sharing policies are of primary
importance in configuring the STE.

For the R&D phase, it will be assumed that four different groups will
be accessing the STE on a regular basis. These will be a tool development
contractor, a tool evaluation contractor, RADC technical specialists, and
other Air Force potential users. Over these groups it is expected that no
more than six individuals, and usually no ‘more than’ three w111 be trying to
use the prototype STE at a given time. :

The probab111st1c workload demanded from the STE is to be synthesized
using the tool utilization data in Section 4 with consideration for .the
particular parameters of each candidate STE configuration. Then other
factors of that configuration such as cost and availability are to be
weighed against utilization-to determine the merits of the candidate.

64

4.0 TOOL UTILTZATION PROFILES

This section presents typical observed utilization information about
REVS, PERCAM, and AUTOIDEF to be used during the evaluation of STE candidate
configurations. Because AUTOIDEE has been introduced only recently, opera-
tional information has not yet been accumulated and can only be postulated.

4.1 REVS UTILIZATION

Because REVS is a complex software system, three phases of operation
must be addressed: development, .installation, and production. The develop-
ment phase is typical of most experimental software projects. Various alter-
native solutions to a problem may be tested on-a trial basis, or a-specific
set of modifications may be implemented according to a formal schedule.
Without knowledge of the specific task to be done, one cannot predict a
spec1f1c activity load.

At some point, however, REVS must be installed on the host system.
The same procedure is followed whether it is an initial installation or
introduction of a modified version. A minimum schedule for the installation
process is five working days because intermediate outputs must be inspected.
and verified at each step. Table 4.1 presents the typical sequence of runs,
by day, and tabulates relevant parameters for each run. The schedule may be
extended and re-runs made necessary by problems encountered along the way.
It qs expected that the installation sequence will be performed 1nfrequent1y
at the STE. :

"~ The "production phase”" (i.e., application by users) will be the primary
STE operating mode: A REVS data.base may be. constructed over a one to six
month period, depending on its scope and complexity.” The time-span of a
REVS prOJect 1s doubled when full s1mu1at1on is employed.

Figures 4-1 through 4-4 present REVS usage data gathered-in March and
April:1980 from a real IV&V project employing REVS to verify software require-
ments for a major Army missile system. The data presented is for runs asso-
ciated with the airborne computer ‘program requ1rements, and represents a
typ1ca1 slice of project activity.

F1gure 4-1 shows the. d1str1but1on of days on wh1ch runs were made over
a nine-week interval, and notes the number of runs each day and total CPU
time used. ‘Individual run times.varied from-four to twenty-seven seconds.
The data base grew from an initial 224 Kbytes on the first run date to about
472 Kbytes at the end of the period. :

From Figure 4-2, one can determine the relative frequenc1es of various
numbers of runs per day over the period. Figure 4-3 enables an estimation
‘of the.number of days to the next run day (e.g., O means multiple runs on
the same day, 1 means approximately one day between runs, etc.). Figure 4-4
shows the distribution of runs by time of day. There is significantly more
activity.toward the end of the day, part1y to submit jobs for overnight pro-
"cessing so that results are available in the morn1ng The STE evaluation
shou1d consider such skews in 1oad1ng :

65

99

RADBO-017 " - .

Table 4.1 REVS Installation Runs

10

PRINTOUT .

oAy | rn. DESCRIPTION - CDC 7600
5 “NO. - | CPU SEC. MAORDS PAGES -
A COPY PERMFILES 18.5 2.17 - 10
2 LIST COMPILER WRITING .SYSTEM .5 . .57 250 .
1 3 LIST DBCS PROGRAM LIBRARY 0 .44 200
4 LIST PASCAL compxpeg_ . 5.7 L.67 . 300 :
5 LIST REVS , 21.5 2.74 1200 -
6 LIST REVS TEST CASES, 6.8 .89, 400
2 7 CREATE RSL TRANSLATOR . . 29.4 2.18° 100
- 8 - (CREATE DATA BASE LIBRARY , 271 1.10 500°
- 9 . CREATE REVS LOAD MODULE (COMPILE REVS). -119.8 2.60. 50
3 10 - CREATE VVLIBE, VVDBLDR : 2.2 - .04, 20
‘ n. ol CRgATE HULL ASSH 1 0.6 .02 50
o 2 CREATE RISF 0.3 .01 10
- 13 CREATE JSL FMULATORS - 19.5 .21 T
14 CREATE REVSLIB 5.3 A3 5
15 NOMINAL INITIAL ASSM - LA .07 s
6" CONSTRUCT PASCAL LIBRARY (PLIB) - o . 22.3 B 50
5 17 MERGE-‘PLIB AND REVSLIB ol e 22 30
: 18%! EXECUTE TEST CASES o 304.0 - - -t
*ACTUALLY UP 10" 35 SEPARATE JOBS ‘ | - -
©TOTALS | ~604 - . . [>14.54 >3220 -

19

| RADE0-014

@

Figure 4-1 Segment of REVS Project Run History

CALENDAR DATE

100+
| NON
86- ' (3)
. (4)
NUMBER
| OF RUNS
60 |
coc 7600 '
CPU-SEC. R (3)
40-] o (%)
(2) (3)
| L K8t | .
(1|.) l |
3/7 318 . 3/21 3/28 a/4 4 418 4/25 5/2

(26)

40 WORKDAYS TOTAL

NUMBER .
OF DAYS

1
2 3 4 5 6 7
.NUMBER OF RUNS PER DAY -

RAD80-013
o

Figure 4-2 REVS Runs/Day Frequencies

68

RAD80-012

OCCURRENCES

(29)

© 43 RUNS (OCCURRENCES) TOTAL

-
-

WORKDAYS TO NEXT RUN

Figure 4-3 Intervals Between REVS Runs' ,

69

0L

RADS0-011

- 81

]

. OCCURRENCES - -

43 RUNS (OCCURRENCES) TOTAL

0800

1 L} BN 1 - 1 N L ¥ 1
0900 1000 1100 1200 1300 1400 1500 1600
TIME OF DAY

Figure 4-4 Time of Day of REVS Runs

¥
1700

1800

1900

2000

4.2 PERCAM UTILIZATION

The t1me span of PERCAM projects varies from two weeks (narrowly-focused
efforts) to a year (complex tactical scenarios-and issues). The typical
. small project employs a deterministic model to examine the basic relation-
- ships and function of a conflict system. Larger and more complex projects
involve the statistical simulation of systems with emphasis on sensitivity
analysis and more detailed modeling. PERCAM 1is used ‘with a "learning curve"
philosophy. A simple model is-initially built and then progress1ve1y
corrected, refined, and expanded as understanding of the problem is gained.
- For most projects, a cons1stent one or two runs per day are requ1red

- Table 4.2 illustrates a typ1ca1 proaect run h1story for a two man-week
project. The first week was spent in learning the basic model and tuning it
to simulate the required constraints. - The second week was spent in completing

.. the model to d1sp1ay the engagements that were desired. As shown by the

table, there is a growth in the amount of computer program time required as
the model reaches its maturity, and then a final set of runs as the completed
model is executed for final results. Table 4.3 iTlustrates the history of

a longer effort that passed through three distinct phases.

'-.Tdble 4.2 Examp1e'PERCAM Study Number One

o -20 ATTACKERS VERSUS ONE DEFENDER
e TWO MAN-WEEK EFFORT
- ONE WEEK FOR THE LEARNING CURVE AND EVENT
LOGIC TREES
- ONE WEEK FOR COMPUTER RUNS AND DOCUMENTATION

e CDC 7600 COMPUTER UTILIZATION - 270 SECONDS

" RUN -NO. CPU SEC. RUN NO. - CPU SEC.
1. " 11.445 '8 . 22,210
2 . 20.161 9 " 22.080
3 . 20.133 10 22.005
4 20.720 . n - 22.023
5 22.019 - 12 21.722
6 21.199 13 21.687
7 22.582 PP

- SUBTOTAL 131.727
SUBOTAL 138.259 :

- RAD80-018

The execution t1me of a PERCAM mode1 1s a mu]t1p11cat1ve funct1on of
the f011ow1ng factors, B :
) Number of time steps over the s1mu]at1on 1nterva1

LA quber of "attackers" - 71

Table 4.3 Example PERCAM Study Number Two

- & 18 ATTACKERS VERSUS, 20° DEFENDERS: -
o FOUR MAN-WEEK EFFORT .~ -~
- TWO'WEEKS FOR MODULE BUILDING
* ONE WEEK FOR MODEL VERIFICATION
- ONE WEEK FOR PARAMETRIC AND SENSITIVITY ANALYSIS
o' COC 7600 CPU UTILIZATION - 457 SECONDS .-

C L o PARAMETRIC AND. SENSITIVITY
MODEL BUILDING PHASE MODEL VERIFICATION PHASE ANALYSIS PHASE

RUNNO. CPUSEC. - RUNNO. CPUSEC. - s RUNNO. CPU SEC:
1 ga2 . M 228w sgon
2 0.8 12 200719 18- t41.235
3 16091 0 13 20,917 o 19 i 41-408 .
1 %6.382 .14 1L S 20, | _42.786
5 4599 . .15 12,675 .
3 B o B * SUBTOTAL" 175.655
7 20.567 e ~ ;.
; 20567 SUBTOTAL 110.876
9 16.701
10 38.583

SUBTOTAL 170.072

RAD80-019

e Number of "defenders” e
e Number of Monte Carlo rep11cat10ns
o Complexity of the Event LogICeTrees.
The amount of memory required is an-additive function of the complexity

of the executive and the complexity of the Event LogIC Trees p]us a multi-
plicative function of the following: .

o Number of attackers.
o - Number of defenders _
® Number of attacker/defender parameters

Typica11y, when Monte Carlo runs are needed jobs are submitted in
small increments over severa] days, then subJected to fIna1 post proceSSIng

b

4.3 AUTOIDEF UTILIZATION

Construction of a sing]é IDEF diagram requires 20 to 90 minutes. A
diagram contains up to six "boxes", each of which may be detailed in a
Tower Tevel diagram.. A-full day's work would involve construction of a
diagram and the diagrams for its subordinate boxes. More experience needs
to be accumulated before a typical pattern of actIVIty is apparent Further
performance improvement efforts are in progress.

72

5.0 STE REQUIREMENTS SUMMARY .

This section consolidates requirements for the STE in.an abbreviated
checklist form, considering the combined needs for REVS, PERCAM, and AUTOIDEF.
Software support requirements are listed in Paragraph 5.1 and. hardware
requirements: are listed in Paragraph 5.2. - In both of these paragraphs, the
tool or tools that primarily drive each requirement are indicated in paren-
theses -- (R) for REVS, (P)-for PERCAM, (A) for AUTOIDEF (or combinations of
these). Other requirements, without 1dent1f1ers in parentheses, are inserted
to provide features necessary to support an STE environment independent of
the specific tools. Integration issues identified in the compilation of
these requ1rements are br1ef1y d1scussed in Paragraph 5. 3

5.1 SOFTWARE ENVIRONMENT REQUIREMENTS SUMMARY _'

e Pasca] Compiler (R} .

- extensions per Paragraph 2. 1 6. 1
® . FORTRAN Comp11er o
- 'ANST FORTRAN 66 with fo110w1ng extens1ons

random file I/0 (R,A) ‘ .

MASK, SHIFT ENCODE DECODE funct1ons (R,A)

support of '>< characters (P) - :

Namelist 1/0 (P)

operand conflicts allowed in ar1thmet1c statements (A)
‘use of literals instead of H011er1th data allowed (A)
. use of ENTRY statements allowed -(A)

e Pascal application to operat1ng system commun1cat1on
‘capability per Paragraph 2.1.6.2 (R) :

SNOOoOT PR W —

e ?SCII 96 character set des1rab1e 64 character set minimum-
~ (R,A) » :

¢ Memory Management (R,A) . U
- segmented Toader transparent to app11cat1on program
(or) ,
- virtual memory management system
¢ - Plotter Support Software (R,P,A)
- CALCOMP FORTRAN interfaces’
- equivalent.to basic CALCOMP routines
® Graphics Support Software: ‘
; - FORTRAN callable (R,A)"
compat1b1e with ACM/SIGGRAPH GSPC Core System (A)

73

e Job Control - -
- multi-phase (R,P)
'a-’ Mod1f1ab1e from w1th1n app11cat1on program (R) - ..
e .Dynam1c file access (R, A) ' e

‘Poss1b1e compatibility . w1th check po1nt restart capab111ty
- at later date- (P)

,'L1brary management ut111ty (R P JA)

Sort/merge utility (P) .
- Independent data entry/ed1t ut111ty

Time- shar1ng environment support

‘Local/remote communications sdpportn”
5.2 HARDWARE ENVIRONMENT SUMMARY "

® CPU speed (R,P,A)

- only machines with less than 55: 1 s1owdown re1at1ve to
CDC 7600 will be considered '

@ Primary Storage (R)
" - more than 1 Mbytes; 2 Mbyte nom1na1
® Mass Storage (R,P A)

_ at least 187 ‘Mbytes on-Tine plus (to be determined)
a11owance for system, user I/O files

- (or) t least 120 Mbytes on-]1ne with arch1ves on
removable disk packs :

@ REVS Color Graph1cs Hardware (R;P)
' - requ1rements per Paragraph 3.1.4
@ AUTOIDEF Graphics Hardware (A)
- -requirements per Paragraph 3:3.4
® Plotter Hardware (R,P,A) N S
- CALCOMP compatible, £-1/2 by 11 format minimum

- continuous-feed 12:inch-and 30 inch paper w1dths
desirable for REVS, 1f ava11ab1e

- off-line operat1on, tape 1nput _
- o Data Entry Devices (R,P)

- ~card reader and/or a1ohanumer1c term1na1 as desired by STE --
tools set no particular requirements except ability to accept

80 column card images “(and display them in the case of CRT
terminals).

74

® Tape Unit.(RgPﬁA)
- TJow speed utility acceptable
- used primarily to generate plotter tapes

® Line Printer (R)
- 600 lines/minute minimum

" - ASCII-96 character set desirable, 64 character minimum
e Internal I/0 Transfer Rates

- to be assessed for each conf1gurat10n in conJunct1on w1th
"CPU speed, memory conf1gurat1on

5.3 STE INTEGRATION ISSUES

The requirements levied on the STE by the tools form a compatible set
except for the graphics hardware requirements of REVS and AUTOIDEF. REVS
uses a color graphics capability, while AUTOIDEF currently uses a Tektronix
4014 h1gh resolution, monochrome, storage tube device of ‘the -type used for
engineering drawing applications. Use of a monochrome display for REVS is
feasible, but not desirable for human engineering reasons. Color is valuable
for readily differentiating different types of display riodes, menu selections,
and error conditions. Sufficient size and resolution may be obtainable with-
in the REVS requirements to support AUTOIDEF needs for the STE. During
future evaluation of graphics -equipment, we will assess means of adequately
meeting the needs of both tools w1th a s1ng1e terminal.

Both REVS and AUTOIDEF use var1ants of the Un1vers1ty of Michigan
ADBMS data base management system. It may be feasible to satisfy the needs
of both tools with a common system, although one or .both of the tools may
need to be modified.. This possibility should be exp]ored dur1ng future
1mp1ementat1on of an STE

75

6.0 SURVEY OF ARPANET SYSTEM HOSTS

A This section presents the results of Task 2 of the STE Study. The objec-
tive of Task 2 was to determine existing computer systems accessible through
the ARPANET which have sufficient resources available: to provide the STE and
which meet the requ1rements defined by Task 1. Further objectives were to
obtain costs for using the system and availability over the next five years,
“and to 1dent1fy systems which cou]d be improved sufficiently to provide the
STE. o

, We have identified several ARPANET nodes, using CDC:and non-CDC machines,
that have the capability to support the STE. However, reliable data on costs
and availability proved nearly impossible to gather, and was not known to the
ARPANET Network Information Center.- Two nodes, Lawrence Berkeley Labs (LBL)
and Argonne National Labs (ANL) readily cooperated to provide as much infor-
mat1on as : poss1b1e but other nodes were reluctant about mak1ng orOJect1ons

_ Costs of us1ng REVS were est1mated us1ng data prov1ded by LBL and ANL

. and. these estimates were comparable. However, comparison of these estimates
with actual charges:for REVS runs at the Naval Air Development Center (NADC)”

- during -installation in May .1979 indicated that the NADC charges .weré approxi-

~mately .fifteen times the -estimates for LBL and ANL. The:causé of this discre-

pancy could.not be ascertained. Therefore, the NADC charges -and LBL/ANL

estimates should be regarded as “high” and "Tow" boundaries on“cdsts”

Similar problems were encountered in - trying to determine: accurate s]ow-
down ratios between various families of computer systems and the CDC 7600. We
have accurate comparisons between CDC 7600 and 6600 séries systems, based on

. actual REVS runs .that shows an average 6600 slowdown. ratio of 5.7:1 relative

to the 7600. - However, .no sourice of re11ab1e information comparing computers
from d1fferent vendors could be found. Standard sources (e.g., Data Pro's EDP
Buyer's Bible, Auerbach Buyer's Guide) do not provide a basis for comparison
between manufacturers, and other investigators have found inaccuracies in what
data are provided [9]. We have, thus, had.to rely on estimates provided by
TRW personnel experienced on several machines.. .

i Paragraph 6.1 discusses methods of investigation used in Task 2. Para-
graph 6.2 presents information gathered on CDC ARPANET hosts, while Paragraph
6.3 presents information on non-CDC ARPANET hosts. In these paragraphs, nodes
are referenced by their acronyms for brevity (e.g., LBL for Lawrence Berkeley
Labs). The full name of each node, and relevant node configuration information
can be found in Appendix A, which is ordered by acronym. Paragraph 6.4 con-
siders the Honeywell 6180 hosts and rejects them for lack of a suitable Pascal
comp11er on Honeywell machines.

Paragraph 6.5 presents available data on REVS running costs at NADC (an

existing installation). Paragraph 6.6 discusses our conclusions about ARPANET
hosts for the STE.

- 76

6.1 METHODS OF INVESTIGATION: TASK 2

. The following topics were 1nvest1gated for each of a number of 1n1t1a11y
screened ARPANET host s1tes

] Comp11ance with STE Software/Hardware Env1ronment Requ1rements
- (summarized in Section 5). :

- @ Job Scheduling, B1111ng Algorithms and the1r Parameters.
@ Individual/Combined Host Utilization.

Data were gathered by querying the ARPANET Network Information Center's on-
line database, by telephone interviews with candidate host liaisons, and by
ARPANET mail communications. Information regarding job scheduling’ and cost
account1ng algorithms was gathered by telephone interviews with each candi-
date host's ARPANET Tiaison, software systems personnel, and from documen-
tation on the candidate host's operat1ng system.

ARPANET host ut1112atwon data was .provided by certain ARPANET ‘host
liaisons. The data reflected two measures of host utilization: First, we
were concerned to measure the host operating system load irrespective of the
source of jobs (local batch, ARPANET interactive, etc.). On this score, data
was primarily qualitative and provided. in :the form.of "educated guesses" as
to the average percent of .total host capacity.utilized on an hourly and
monthly basis. Secondly, we were concerned to measure host utilization
originating ¥n ARPANET activity (file transfer, interactive, mail, etc.).

The available data were presented in the form of packets transferred to a
given host per month. Regrettably, statistics distinguishing interactive,
mail and file-transfer activity at candidate ARPANET hosts were not available.

6.2 CDC ARPANET HOSTS .

In this paragraph we present those CDC ARPANET system hosts which are
adequate to each tool in the STE and to.-the STE as a-whole. - The tools com-
prising the STE were originally developed on Contro]l Data machines and
operating systems. We indicate those CDC ARPANET system hosts which use the
“base11ne“ operating system for a g1ven STE tool in the fo110w1ng d1scuss1on

6.2.1 Hardware/Software Functional Requ1rements

Tab]e 6.1 presents the .status of each CDC ARPANET system host'configu—
ration as determined by the hardware/software funct1ona1 requ1rements imposed
by the tools of the STE.

7

Table 6.1 CDC ARPANET . Host Evaluations

GOOD | MARGINAL |UNACCEPTABLE | UNDETERMINED.

"LBL,FGLIN,AFWL,

NADC , DTNSRDC ,BNL ,
NSWC-WO ,NSWC-DL,

AFWL , FNWC

PERCAM I NYU,WPAFB

LBL,EGLIN,AFHL,
NADC:, DTNSRDC,BAL ,
AUTOIDEF | \sic o, NSWe DL

U | ARWL,FNNC

" NYU,WPAFB

LBL,BNL, - |EGLINAFWL, -~ | -~ -« |
NADC DTNSRDC,NSWC-HO, | . FNWC | NYU,WPAFB.
NSWC~DL |

RSL7REVS-

PERCAM was or1g1na11y deve]oped under the .CDC SCOPE operat1ng sysStem,
AUTOIDEF undér the CDC NOS operating system, and RSL/REVS ‘under the’ cbe SCOPE
operating system (with subsequent mod1f1cat1on and transport to a KRONOS
operat1ng system at. NADC) : .

Both the KRONOS and NOS operat1ng systems run on var1ous mach1nes at
NADC which makes this host a good installation and 1ntegrat1on site for the
STE. To date, REVS and PERCAM have been installed at NADC ‘but AUTOIDEF has
not been installed. L

, The. NOS/BE operating system at EGLIN would provide an adequate operat1ng
environment for STE installation and 1ntegrat1on since it extends NOS with
certain KRONOS capab111t1es There- is the caveat, however, ‘that the Pascal

compiler at EGLIN has uncertain or1g1ns It res1des in a user file but not
in a system file and, thus, receives little or.no system mainténance. The
compiler installed w1th REVS at NADC could possibly be adapted, ‘but the
extent of requ1red modifications cannot be estimated precisely without,
detailed comparison of the NADC and EGLIN operating systems. ATso, the - JOb
control Tanguage 1nterfaces with REVS must be verified to be compat1b]e with
.gcurrent installations. Cons1derab1e var1at1on ex1sts between d1fferent CDC
operat1ng systems and site vers1ons

SCOPE, widely regarded as a "friendly" operating environment for large
scale CDC software transfers, runs at AFWL, BNL, and NSWC-DL. However, AFWL
and NSWC-DL are rated marginally adequate for STE installation and integra-
tion because their primary memory configurations are less than generous. The
principle concern would be with REVS operations which might well tax the
memory resources at these hosts, especially interactive operations during
peak system load periods. If the primary memory configurations at these
hosts were upgraded to meet the requirements of REVS operations, they would
provide adequate sites for STE 1nsta11at1on and integration.

78

The- BKY and SESAME Operat1ng systems -at. LBL are based on SCOPE version

1.6 with extensions made to suit Tlocal service requirements. A1l other
factors being equal (an unusually optimistic assumption about computer opera-
tions), LBL would be a good operating environment for STE installation and.
integration since BKY and SESAME use the same program interfaces as do-the
other CDC operating systems. LBL personnel have been most helpful.. They :
alone, among CDC ARPANET personnel, provided us with data.on host. ut111zat1on,'
job.scheduling and job costing. Moreover, LBL's hardware configuration is:
similar to those encountered in past STE installation-and application .
experiences. We can, therefore, offer our assessment of LBL's STE-adequacy
with more assurance than in the case of other CDC ARPANET system hosts. Once
again, detailed operating system comparisons must be made before a precise
est1mate of required mod1f1cat1ons can be made. .

FNWC is rated unacceptab1e because the system software at that host
Tacks a Pascal compiler. Apart from this déficiency, FNWC would provide a
good environment for the STE since it runs the SCOPE .operating system and has
a good memory configuration for STE installation and integration.. Although
the current compiler used with REVS could probably be installed with little
difficulty, FNWC is apparently reluctant to allow such installations.

In sum, LBL, BNL, and NADC appear to be the best candidate CDC ARPANET
.-hosts to satisfy the STE hardware/software functional requ»rements

6.2.2 CDC Host Job Schedu11ng Cons1derat1ons

A11 cDC ARPANET host operat1ng systems un11ke, say, UNIX or MULTICS

are primarily batch oriented. That is, incoming jobs are delayed in an 1nput'
‘queue for service and are scheduled for execution on the basis of resource
requests (e.g., CPU time, memory, peripherals) and a user-supplied priority.

The priority of a. job may be modified downward by the job -scheduler if allo-
" cating the requested resources would- s1gn1f1cant1y reduce system throughput
. Jobs are initiated.by entry into an "active" queue and multiplexed in a
round-robin fashion for time quanta that vary so as to enhance system through-
put. Interactive jobs are treated as essentially batch jobs with ‘the highest
priority and 1mmed1ate entry 1nto the active queue as default character1st1cs

The similarity among CDC ARPANET host job schedu11ng 0011c1es is a
vestige of their common origin out of an earlier CDC operating system. The
differences that do exist in_job scheduling policies. across CDC ARPANET
“hosts attach primarily to the weight given the various resource quanta that
affect a job's priority but not to the strategy of selecting the order in
which jobs are executed.

For instance, at LBL, the key factor (total job "computing units“ (CUs),
see Section 6.2.4.1 below) determining a job's-egfective scheduling priority
is computed as. a weighted sum .of its requested CPU time, memory and periphe-
rals service. The critical breakoo1nt value accord1ng to user service con-
tacts is 63 CUs.

79

In the next paragraph, we detail the job scheduling algorithms and
policies at LBL, thus prov1d1ng a parad1gm case of’ CDC ARPANET host job
.schedu11ng ‘ :

6.2. 2 I Job Schedu11nq at LBL

" Job resources include job slot 1dent1f1ers called "control po1nts

~ small and large” core memory (SCM and LCM), the CPU, tape drives, data ce11s,
-the chip store, and unit record dev1ces (pr1nters punches, microfilm proces-
sor, Ca1comp plotters). ' '

‘Resolrces are allocated on the basis of an "urgency" factor which is a
function of jobcard priority, the age of a job (its time in the system), and
other factors turning on the resource being scheduled. The aging factor is
cumulative through the 11fe of the job and 1ncreases at a rate dependent on
the ‘jobcard: pr1or1ty

Three genera1 types of schedu11ng are encountered as a job flows through
the system -- Jjob" 1n1t1at1on, resource a11ocat1on dur1ng execut1on, and queued
file process1ng '

6. 2 2 1. 1 Job In1t1at1on at LBL

, A JOb enters the system when it reaches a 6000 {the B (6600) or C (6500)
machine). Jobs are then sent.to the specified machine to be placed in the
input queue. Rush and normal jobs with a CU limit-of 63 or Jless will have a
higher urgency for initiation than other rush JObS This is done to allow

fast turnaround for debug "jobs. . . T

Jobs dest1ned for the 7600 must first. pass through the common 6000/7000
input queue. While in the input queue, a job'surgency is expressed as. a two
-digit octal ‘humber, CA where C is the job.class.(determined by jobcard
priority and whether the account number is DOE funded or:not), and A is the
age of the job (determined by the time in the system). - This two digit ndmber,
" urgency, is.used to determine the order in which jobs are sent on to-the 7600.
The same -general scheme is used for 6000 jobs. Once the job's urgency is
“determined (by the method described above), the .6000 scheduler can determine
which jobs to initiate. : '

The C parameter: used in determining urgency is determined from Table=6.2.
The ‘A parameter is assigned on the basis of the maximum number of hours the
job has been in-the systen, as shown 1n Tab1e 6. 3 ‘ -

6.2.2. 1 2 Resource A]]ocat1on Dur1ng Execut1on at LBL

' Each execut1ng job in the 7600 and 6000s is assigned a job slot identi-
“fier called a control point. The 7600 has 127 control points and the 6000.
system has 63. This limits the total number of jobs that may be executing
at any one time. S S : C ‘ : :

The scheduler attempts to optimize throughput (jobs completed per unit
time) by having as many jobs as possible doing things at once. Thus, for
instance, a-job which is expected to start some I/0 in a short while is given

80

PO

Table 6.2 Input Queue Classes (C Parameter)

A NON-DOE | DOE .
JOBCARD PRIORITY | FUNDED | FUNDED
DEFERRED (2-4) . 2
NORMAL (5-7) 3 4
RUSH . (10-16) | 5 6
INSTANT = (5-16 & <= 63 CUs) 7 7

Table 6.3 -Age Computation for Input Queue (A Parameter)

MAXIMUM HOURS IN SYSTEM A
LESS THAN 1. 0
R 1 1

4 2

10 3

16 4

38 5

52 b

INFINITY 7

the CPU in preference to a job which is expected to compute for a long time.
Then the first job can do I/0 while the other is using the CPU. This tends
to decrease the turnaround time slightly for the CPU-bound job, but it in-
creases the system throughput dramatically. . The guiding principle, again,
is this: Maximize throughput while allowing for special cases.

The 7600 and the 6000s basically schedule memory occupancy and CPU use.
Jobs in main memory’ that are ready for execution may be rolled out to disk if
a job of higher urgency needs the memory space. Jobs waiting for some device
or staging also may be rolled out to disk. The scheduler queues them for roll-
in when they are ready to run and their urgency is sufficiently high.

The urgency for LCM occupancy (see scheduling formula below) includes a
factor for computing units (CUs) remaining until the CU 1imit. The job with
the highest urgency- (the primary job) is the one put in LCM first. If the
job in SCM needs to reference the disk to reload or empty an LCM-buffer, it
is swapped out to-LCM. Rollout to disk occurs when a job attempts to stage,
or when another job has a higher urgency for LCM occupancy. Job initiation
occurs when a job in the input queue has a higher quency than one of those
~in LCM or when there is no executing job which is ready to use the CPU.

81

The factors in the urgency for CPU use are CPU burst time, CUs remaining
to CU Timit, and field length. The Tast two factors are relatively unimpor-
‘tant. Urgency for roll in/out includes factors for devices attached and
field Tength where 1engths of 160,000 bytes are used in cons1der1ng field
length. . .

Executing interactive jobs receive special urgency cons1derat1ons when-
‘'ever they are in any queue.

The operators can increase or decrease en-exeCUt%ng'job“s urgehcj. This
is done by an entry at the operator console, and.is subject only to the opera-
tor's discretion. The phrase used.to describe this is "forcing a job".

The length of the file is a primary factor in the urgency for processing
queued files. .Secondary to length is the jobcard priority and the age factor
of the job. Only whén the job-has been in the quéue for.a 16ng time will the
pr1or1ty or age factor over-ride the length factor The"order of processing
is always subject to operator intervention. S

6.2.2.1.3 Scheduling Algorithms at LBL

: On the 7600, there may be six jobs in LCM at once. The scheduling
priority, P (or -- the urgency for LCM occupancy) of a job is a single integer
‘calculated as fo]]ows '

= K + FORCES + D + B*AGE - E*(LOG2(CUR)) + (DOE BONUS)
-(DISK PENALTY) - (LCM PENALTY) + (RUNNING BONUS)~
+(DISK ALLOCATION BONUS) + (INSTANT BONUS)

Each job be]ongs to one of the fo110w1ng four c1asses -- rush, norma1 de-
ferred,. and background. 'Of the various parameters in the a]gor1thm, on]y A,
"B, and C are class dependent, A1l the terms above are expressed in. terms of
an effective age (in minutes). The priority for a job .is essent1a11y that'
age at which its effective age is the highest in the machine.

_ The fo11ow1ng'1s a definitjoh of each term in the‘expression’for P:

.K;: B ji‘il, - A constant chosen to make P positive;{ﬁ-a]1ccasesl
FORCES - - = ... are applied by the operator or -the System in *
order to move a job above all competition. The

system automatically forces certa1n JObS necessary
for its own 1ntegr1ty '

D 0 for normal jobs, 240 (4 hours) for rush jobs,
-10,000 for deferred jobs (they can never compete

" with normal or rush. jobs) and -20,000 .for back-

""ground jobs. ' ' o .

B . o ... is 1.2 for rush 110 for norﬁa],.and‘0.8'for
deferred. :

82

AGE ‘ . The time in minutes since the JOb has entered the
queue. It can reach a maximum of 4095 m1nutes

(2.5 days).
E . 60 minutes for all jobs. _ o
CCUR . - ' CUs remaining to CU limit. (NOTE: . -C*(LOGZ2(CUR))

gives shorter jobs better turnaround. - Each factor
of 2 in CUs is worth 60 minutes for all jobs. This
LOG2 dependence, though not a fine enough mapping,
provides a reasonable means to reward short jobs
and at the same time not penalize large jobs exces-
sively (as would be the case, e.g., with linear

dependence). .
NOE 'BONUS 90 minutes. Given to jobs with DOE account
: C numbers . o S :
DISK PENALTY Reflects the fact that users who specify more than

10,000 sectors will cause a dramatic increase in
system staging. It is 180 minutes.

LCM PENALTY Reflects the fact that a job that uses too much
‘LCM reduces system throughput-by keeping other
jobs out. The current value is MAX[(TOTAL LCM -
600K)/10K, 0] minutes.

'RUNNING BONUS 1024 minutes awarded to a Job in LCM since it need
' : not be rolled in.

DISK ALLOCATION 180 minutes awarded a job which is using a lot of
BONUS : disk and, thus, "paying" the disk penalty assessed
- on its d1sk space request.

. INSTANT BONUS 450 minutes awarded to a job which can be finished
_ - in-about 30 seconds or Tess so as to reflect the
efficiencies caused by the subsequent re]ease of
its resources

The .central processor is scheduled by assigning it to the Teast cpu-
bound - job available. Thus, the single highest priority job is chosen first.
Then the highest priority job which will "fit" with the first .is chosen,
followed by the highest which fits with the other two, etc., until no more
jobs can fit or the maximum of 6 jobs manageable by the system is achieved.

LCM space available will almost a]ways be the factor 11m1t1ng the
number of jobs running. It turns out that maximum throughput is achieved by
slightly overcomm1t1ng the CPU. :

6.2.3 CDC Host Utilization Considerations

Data on this subject were the most difficult to acquire. The following
general facts do hold across CDC hosts. Host utilization varies by time of
year, week, and day. In late August and early September, i.e., at the end of
the fiscal year, host utilization increases as users seek to exhaust their
computer usage budgets. During the fhanksg1v1ng, Christmas and other

- 83

holiday seasons, host utilization drops off. Weekly host utilization tends
.to be at its Towest-on weekends. except for system maintenance and software
upgrades.

The most significant.indicator of host availability as a function of
host utilization is therefore the variation in system load during weekdays
not falling in a holiday season or toward the end of the fiscal year. From
this standpoint, we gathered the following particulars from some of the CDC

~hosts. Others were-unwilling to release such information.

@ LBL

-- The Department of Energy is the preferred LBL user and is
given priority over all others, deadlines not withstanding.

-- Prime time shift: 9-a.m. - 5 p.m. The hoest machines are
operating at or near the 83% utilization maximum. Between
10 and 12 a.m., there are approximately 5 users awaiting
1nteract1ve service.

-- Non-prime time shifts. An average of 10% of host machine
capacity is available. Interactive response is rapid and
batch jobs encounter only short delays. Caveats: Large
accounting and environmental measurement jobs are run between
the hours of midnight and 2 a.m. and maintenance and house-
keeping procedures are run on one but rarely both of the
6000 'series machines at around 6 a.m. which leads to some
degrading of interactive response time and some increase in
batch job delays.

‘® NSHC-DL

-- Interactive services are available only between 7 30 a.m.
and 9 p.m. . R

-- As with LBL, 1nteract1ve lines are “saturated“.around 11 a.m.
and-again around 2 p.m.

. -- The highest priority jobs encounter a delay of no Tonger
- than 45 minutes, the 'second highest priority jobs are de-
layed no longer than 90 minutes, and the ‘third highest
priority JObS are de]ayed no more than 2 hours

6. 2 4 CDC Host Job B1111ng Considerations

The ARPANET Tiaison and software systems personnel- at LBL have provided
us- with excellent documentation on their job billing algorithms, policies and
procedures. LBL's hardware configuration includes: a CDC 7600, 6400 and -6600
and is therefore similar to configurations referred to in certain STE utili-
zation studies discussed below. In what follows, we present the job
accounting algorithm at LBL and app1y it to the findings of the utilization
studies. ,

6.2.4.1 IBL's Job Aecounting'A1gorithm

Jobs run on the CDC 7600 at LBL average $800 per real-time hour used.
Those run on the 6400 and 6600 machines average $200 per real-time hour.

84

These figurés are fairly representative of utilization costs across CDC
ARPANET system hosts.

Job billing at LBL'is determined by a basic charge for system services
p1us.an overhead rate computed on the basic charge as follows:

© TOTAL JOB COST = (1 + OVERHEAD) * AUs
where OVERHEAD = 40.5% and |
TOTAL JOB AUs .= W * [J + (CUs * P)]
An AU (accounting unit) is $ 035, and the. CUs (”cemputthg units", see be]ow)
measure job CPU time, I/0 activity, terminal connect time, memory usage, tape

mounting and materials charges. P is a priority factor dependent on user
specified job priority and day of the week as follows:

(pr1or1ty 2 - 4, "deferred"), weekdays .75
(priority 2 - 4, "deferred"), weekends/holidays. .50
(priority 5 - 7, "normal") 1.00-
(pr1or1ty 10- 16 "rush") .. 0 2.00

W depends-on the day of the week and target machine on wh1ch the job runs as
f011ows ' : ‘

6000s, weekdays o 1.00

6000s , weekdays/holidays - - _— - .50
7600, weekdays : S ‘ .. 1.00
7600, 2 day weekends/h011days ' o 75
7600, 3+ day weekends _ : o .50

Jis a job initialization charge dependent on the target‘machine: J=10 for
the 7600 and J=2 for the 6000s. NOTE: . Running a job in two halves increases
its overhead costs. The number of CUs per "job run on the 7600 is determined
by the fo11ow1ng a1gor1thm ' :

7600 JOB CUs = 3 * (CP + SS) + .5 * BLDI+ IT0 +rSTAGING
Where CP is the amoint of CPU time used by non-system related activity in a
job step, SS is the number of "system seconds" spent in system monitor opera-
tions, BLD is the number of large core buffer loads in the job, staging is

the cost associated with job step preparations, and ITO, an "interferencé to
‘others" measure, is given by the formula S

IT0 = [4 * MAX(1.2%CP,BLD/3) - (3 * CP +lBLD/25]:*‘LCM/4,000,000 |
For the 6400 and 6600 at LBL, we have: |

6000 JOB CUS .= (M*CP+20*KMR) * (14CM/32768)‘+ (10%MT) + (5*AT) + TTY
Where M=. 7 for the 6600, M=.4 for the 6400 (6600 speed = 1.75*%6400 speed),
KMR is the number of:operating system monitor requests in thousands, CM

measures the "instantaneous" field length (dynamically variable), MT is the

85

number- of .tapes mounted by an operator, AT is the number of tapes mounted
automatically, and TTY is the number of CUs charged for terminal connect.
time depend1ng, as fo11ows, on time of day and connect1on origin:

10 a.m. - 1CU/connect m1n.-"x 4 for

6 a.m. oo ' .
6 a.m. - 10 a.m., 6 p.m. - midnight .5CU/connect min. ARPANET
midnight - 6 a.m. o o .25CY/connect min. connection

6.2.4.2 Estimating STE Job Costs at LBL

STE utilization of CDC ARPANET hosts satisfying the hardware/software
environment requirements summarized in Appendix A can be modelled directly in
terms of .the results of STE tool utilization studies presented in.Paragraphs
4.1 and 4.2. Given -the billing algorithms used-at a representative CDC host
such as LBL,- the utilization study provides a model casé of .STE job cost -
estimation for CDC hosts with similar -hardware/software configurations.

6.2.4.2.1 REVS File Transfer and Storage Costs o

In this section, we d1scuss the costs associated with the transfer and
storage of mass storage files for the different phases.of REVS operations.
The first cost we consider is for transferring files over the ARPANET via the
File Transfer Protocol (FTP). .Most ARPANET hosts do not charge for the.use
of an FTP connection but only for the use of interactive connections. The
use of FTP channels therefore involves only those costs that result in opera-
tions on the host's file system, e.g., allocating, opening, closing files to
be FTPed. These costs are of the same scale as those associated with the
intended file activity for the various REVS operations. = We therefore discuss
the costs associated with file activity in REVS operations.

Each REVS phase makes use of several mass storage files. The 1argest

of these will determine the costs associated with REVS filée storage since the
LBL policy for: storage charges 1nvo1ves a cost of $1.50 per 5500 word segment
(program storage allocation unit, PAU) dssessed on the maximum. number of PAUs
in use during a given month. Since the greatest REVS file activity or1q1nates
in batch jobs, we may safely assume that this cost will be determined by the
largest file associated with a job in a given phase of REVS operations. The
assoc1ated cost for each such phase 1s detailed as fo]]ows

f LARGEST ‘MASS STORAGE FILE SIZE'(WORDS). : COST MONTHLY)
 Installation Phase - - . 277,929 - - $75.80
Production Phase : 616,080 . . = $168.02: S
Application Data Base 200K - 450K $54.55 to $136.00

Assuming that the production phase of REVS operations proceeds during
the same month that REVS is installed, the $168.02 .charge for the Tlargest
production phase mass storage file will dominate the storage costs through
that period. There are, of course, minor charges associated with mounting
and entering the files into the LBL PSS library, but not of the same scale.

- 86

6.2.4.2.2 REVS Installation Job Costs

The results of the REVS utilization study indicate the running of up to
52 separate jobs during the installation phase. The following data were °
accumulated during REVS installation: -

-CDC 7600 CPU SEC. I/O MWORDS
minimum 0.6 = minimum < .01
maximum 304.0 . maximum 2.74
total =604.0 “total >14.54

We make two assumptions about: jobs run at LBL which are borne out by repre-
sentative samples. First of all, a rate of 40 BLD CUs per I/0 megaword
involved in a job.is-assumed and, secondly, a job STAGING factor of .034
times the total BLD CUs accumulated. Form this standpoint, the cost of
installing REVS at LBL would be: o . »

TOTAL (acroés jobs) AUs = (1 + .405) * AUs
where A _ |
“AUs = 1.00 * [52 * 10 + (TOTAL JOB CUs * 1.00)]
assuhing for the worst case a W factor of 1.00. MWe then have -

_TOTAL JOB CUs = 3 * (CP + SS) + .5 * BLD + ITO + STAGING

18.2 +.300 + 1000 .+ 20
3132 -

hence we have '

TOTAL AUs = 1.405 * 3652 ='5130
which y1e1ds

TOTAL INSTALLATION COST = $180.00 .

Note that th1s‘1nsta11at1on cost estimate assumes that installation
phase jobs tend to be CPU bound, a favorable characteristic from the stand-
point of job scheduling at LBL and,'presumab1y; other CDC hosts. Qur assump-
tion of 40 BLDs per megaword of I/0 may be over conservative. If not, tuning
the I/0 parameters of REVS could reduce this cost factor so as to accord with
the abpve results. The installation estimate is based on a scenario in which
the installer operates via a remote connection to LBL over the ARPANET and-
transfers files to and from LBL via FTP for batch job submission- and local
spooling of results to a lineprinter. This justifies the otherwise minimal
STAGING cost associated with the interactive prepaVat1on of job. streams

6.2.4.2.3 REVS Production Phase Costs

Paragraph 4.1 deta11s the results of a typical REVS project on which 43
jobs were run over a nine week interval. Individual runs varied from four to

87

twenty-seven seconds and involved an application data base growth from 224
Kbytes to 472 Kbytes. If we assume that CPU seconds account foy about a
fifth of the total CUs accumulated by a job, as in the installation phase,
we have the fo11ow1ng cost estimates for the product1on phase REVS runs, by
day: _

DAY RUNS/DAY' CUs /DAY AUs /DAY COST/DAY

1 2 100 120 K ,4.20
2 8 500 580 ~$20.30
3 2 175 195 $ 6.20
4 an 50 60 © 8 2.10
5, 3 275 305 $ 10.68
6 5 225 275 - '$ 9.63

7 1 150 - 160 "$ 5.60
8- 3 - 270 300 $ 10.50
9 1 110 © 120 $ 4.20
10 - 6 450 510 $17.85
11 1 90 100 $ 3.50
12 4 390 430 . $ 15.05
13 3 175 405 $ 7.18
14 3 425 455 $ 15.93

TOTAL ESTIMATED COST.= $135.93
'6.2.4.2.4 ’PERCAM Job Cost Estimates

A The two PERCAM utilizatjon studies contained in Paragraph 4.2 would
entail estimated costs at LBL for comparable PERCAM operations as shown in
.Tables 6.4 and 6.5.

6.2.4.2.5 AUTOIDEF Job Cost Estimates

There are no sufficient utilization studies available for purposes of
estimating the costs involved in AUTOIDEF operations at CDC ARPANET host con-
figured along the . Tlines of LBL.

6.3 * NON-CDC ARPANET HOSTS PARTIALLY EVALUATED BY TRW

' Preliminary studies indicate that several classes of ARPANET host
machines are adequate to the hardware requirements for combined CPU speed
and I/0 rate imposed by the STE. These include the IBM 370/158 and higher
series and the Univac 1100/40 and higher series. We also consider DEC VAX
11/780 ARPANET hosts in this section, but this machine is considered under
Task 3 for stand-alone STE operations as well. ,

' 6.3.1 Hardware/Software Functional Requirements

" The hosts shown in Table 6.6 are presented in terms of the degree to
which they satisfy the further software/hardware requ1rements

UCLA-CCN and ANL are both 1arge IBM multi-processor hosts with more than
: adequate hardware/software conf1gurat1ons for STE operat1ons ANL supports

88

Table 6:4 PERCA" Study Number One Cost Estimates (LBL)

e 20 ATTACKERS VERSUS ONE DEFENDER

@ TWO MAN-WEEK EFFORT n ;
-~ ONE WEEK FOR THE LEARNING CURVE AND EVENT LOGIC TREES
~- ONE WEEK FOR COMPUTER RUNS AND DOCUMENTATION

COST ESTIMATES

CHECKOUT PHASE ~ RUN_NO. CPU.SEC. - COST
C 11.445 '$2.00
2 20.161 $ 3.53
3 20.133 $ 3.52
4 20.720 $ 3.63
5 20.019 $ 3.85
6 21.199 $ 3.71
7 22.582 $3.95
SUBTOTALS - 138.259 §24.20
STUDY PHASE |
: 8. - 22.210. - % 3.89
9 22.080 $3.86
10 22.005 $ 3.85
1 - 22.023 $ 3.85
12 21.722 $3.80°
13 21.687 $ 3.80
“SUBTOTALS 131.259 .-~ $22.97 -

TOTAL 7600 SECONDS = 270
TOTAL COST STUDY ONE = $47.00 °

89

Table 6.5 PERCAM Study Number Two Cost Estimates (LBL)

o 18 ATTACKERS VERSUS 20 DEFENDERS
¢ FOUR MAN-WEEK EFFORT

-- TWO WEEKS FOR MODULE BUILDING .
-- ONE WEEK FOR MODEL VERIFICATION
-- ONE WEEK FOR PARAMETRIC AND SENSITIVITY-ANALYSIS

COST ESTIMATES

MODEL 'BUILDING RUN NO. CPU SEC. COST
o | T 8.492 - $71.49
2 10.318 $ 1.81
3 16.191 $ 2.83
4 16.382 $ 2.87
5 4.599 $.80
6 18.918 $ 3.31
7 20.567 $ 3.60
8 20.381 . $ 3.57
9 16.701 $ 2.92
10 38.583 $6.75
'SUBTOTALS ~ 170.072 $29.76
VERIFICATION
| . o 22,219 $ 3.89
12 . 20.719 $ 3.63
13 " 20.917 - $ 3.66
14 C11.911 . $ 2.08
15 12.675 $ 2.22
16 . 22.435 - $3.93
SUBTOTALS 110.876 $19.40
P&S ANALYSIS | B
17 50.271 $ 8.80
18 o 41.235 - -§-7.22
19 41.404 . $ 7.25
20 42.746 $ 7.48
SUBTOTALS 175.646 = $30.74

TOTAL 7600 SECONDS = 457
TOTAL COST STUDY TWO = $80.00

90’

Table 6.6 Non-CDC ARPANET Host Evaluation

. GOOD MARGINAL - . _UNACCEPTABLE UNDETERMINED
1 vcLA=cen, ceA ' | o |
PERCAM | NOSC-CC,NWC, ' CLL - DTI
ANL ,NUSC ' -
‘ | UCLA-CCN,CCA, . _
AUTOIDEF | NOSC-CC,NWC, ' . LL - DTI
ANL ,NUSC ' ' '
RSL/ReVS | UCLA-CON,CCA, | NOSC-CC,NHC, | LL' IR

ANL | | nusc

onTy 1200 baud -communications with ARPANET users but is willing to upgrade
this aspect of their communications configuration to the requirements of a
cost effective long term (=5 year) ARPANET software project. Both hosts can
offer the new IBM Pascal compiler in their system libraries for purposes of
REVS development. LL uses an Amdahl 470/V7 processor running under VM/370,
an IBM type system, but does not support software development by non-Tocal
ARPANET users. A ' ’

CCA, DTI -and NUSC use DEC VAX 11/780 processors but, whereas NUSC runs
the DEC VMS operating system, CCA and DTI run Paging UNIX (U. C. Berkeley,
v.32). VMS supports DEC Pascal, an implementation already used in one REVS
installation. Paging UNIX, however, does not as yet support an adequate
production quality Pascal compiler. -The NBS Pascal compiler, originally
developed in a UNIX environment, is expected to be re-embedded into UNIX
environments in the near future. However, the NBS compiler does not support
GO TO constructs used by REVS for error recovery. Because of the popularity
of the DEC VAX, the UNIX operating system, and the Pascal language, it is not
unreasonable to expect that an adequate Pascal compiler will emerge in the
near future. The availability of such a compiler is presupposed in our rating
CCA a good STE candidate. DTI's status is uncertain because; as yet, it has
no interface to the ARPANET that supports the necessary file transfer opera-
tions. NUSC has been rated marginally adequate because its VAX has a minimal

main memory size (1 megabyte).

There is a widespread belief that Paging UNIX does not compare favorably
with UMS as a VAX-hosted virtual memory operating system. -In fact, this was
the case with the initial versions of Paging UNIX which were more concerned
to exploit the transportability of that system than to tune its interfaces to
the VAX architecture. - The paging performance of the latest version of Paging
UNIX is within 10% of VMS's. It must be pointed out, however, that an unknown

91

degree of modification may be necessary to adapt REVS to interface with UNIX.
Adaptat1on to VMS has already been done.

NOSC-CC and NWC both use Univac processors. Both have sufficient

main and secondary memory for STE operations and provide Mike Ball's NOSC
Pascal compiler in their user Tibraries. This compiler appears to satisfy

the REVS compiler requirements detailed in Paragraph 2.2.6.1, except that -
- DISPOSE is not supported. NOSC runs the Univac 1100 operating system while
NWC runs the EXEC 8 operating system. Both operating systems have the func-
tionality and utilities required for STE operations. However, the sites
" are Tisted as marginal for REVS support because of the need to modify the
- NOSC compiler. A compiler developed by the University of Copenhagen (Denmark)
" may be an acceptab]e alternative, but is not currently supported at any site.

» 6.3.2 Non-CDC Host Processor Slowdown Ratios

~ The desired slowdown-ratio for STE hosts should be no worse than fifty-five
: to one relative to the canonical CDC 7600 installation at the BMDATC ARC. TRW
has produced benchmark studies which compare the makes/models of the non-CDC

- hosts presented above. The performance comparisons are made in terms of a
“'weighted measure of CPU speed and I1/0 rate. The following is a summary of

the results of these studies and conversations with TRW systems personnel
well-versed in the characteristics of the host machines:

- HOST MACHINE | ~ HOST:CDC 7600 SLOWDOWN RATIQ
- IBM 3033 | <3:1 |
Univac 1100/82 .o<be]
- Univac 1110/40 o <901
-DEC VAX 11/780 . 7:1 on MIPs a]one, I/0 is known

to increase this greatly.
.. This 1nformat1on ‘while informative for bounding the slowdown ratios.,
takes into cons1derat1on neither STE-specific operat1ons nor host. processor
eff1c1enc1es available to them. : :

6.3.3 Host Ut111zat1on Cons1derat1ons

-~ The - fo11ow1ng part1cu1ars have been gathered from inputs. prov1ded by
non- CDC host .user service personnel. .The general points about host utiliza-
~tion variations with t1me of year, day and week app]y to non-CDC ARPANET
hosts as well.

o CCA

-~ As much as 50% of the system capac1ty 1s ava11ab1e on
the average day _

o ANL , _
-- The processors always have some excess capacity.

-= One or two more 1nteractive users could be accommodated
during the day. :

92

AR

-- The batch system saturates "softly" in that it can
accommodate small jobs (500 Kbyte + 10 'CPU sec) :jobs
at any time. '

6. 3 4 Host Job Schedu]lgg and B1111ng Cons1derat1ons

To date, there is no model study of STE ut111zat1on for non-CDC ARPANET
system host machines otherwise adequate for the requirements imposed by the
STE. In these cases, given an account of the job billing algorithm, policies
and procedures of a representative non-CDC host and the tolerances in perfor-
‘mance slowdown of a given host relative to the canonical CDC 7600 installa-

- tions. of the STE, we can still bound the job costs assoc1ated w1th STE

' ,operat1ons at the host.

ANL systems personnel have provided us with an account of user service
rates in effect since the end of July, 1980. - These rates will be increased
by fifteen percent some time in November, 1980. The precise billing and
scheduling algorithms ‘were not provided although the service rates give a
good measure of STE job costs based on the utilization results of Section 4.

In this section, we present the service rates of interest to STE opera-
tions at ANL, estimate the costs associated with the jobs recited in our. '
discussion of STE job costs at LBL, and conclude with-a summary of the job
scheduling parameter breakpoints of importance to STE operations. Note that
our approach assumes that STE performance at ANL will be comparable to STE
performance at LBL. -This is.not as unrealistic as one might at first think
_because’ the CDC 7600 and the IBM 3033 processors are actually closer to one
-another in. performance than our "worst case" slowdown ratio presented in the
last section would suggest ‘

6.3.4.1 ANL Service Charges of Interest to STE Operat1ons

INTERACTIVE SERVICES .
CHARGING PRIME ~ NIGHTS AND

UNIT. . . TIME) " WEEKENDS
CMS (IBM 3033) o ~ . L
Session Time Hour $ 1.20 $ 0.54
CPU Time ~ .~ Hour : 240.00 -.108.00
- Disk I/0 CEXCP~ _ 0.0006 - 0.00027
- Storage - Kilobyte - - 0.282 .- 0.1269

Occupancy Hour .

93

WYLBUR (IBM 3033 and 370/195)

Session Time Hour .
CPU Time Hour 240,
Disk I/0 EXCP 0
BATCH SERVICES
0S/MVT and ASP (7BM 3033 and 370/195)
CPU Time* ‘Hour - —$120.
Wait Time* Hour 60.
- Core x . Kilobyte 0.
- CPU TIME*" . Hour .
Per Job Surcharge = 0.
Library Tape Tape 0
. Setup** ‘
Personal Tape Tape -0
Setup** '
Disk Setup** ' D1sk 1

1

.0006

20 . % 0.54

00 -108.00

0.00027

00
00
141

15 -

.50
75"
.50

Note that the term EXCP refers to an I1/0 blogk (approximately 1680 to 3120 -

. bytes) transfer.

Batch Pr1or1ty Mu1t|9J1ers -

EXCPs involve a worst case "wait time" of 35 milliseconds.

Items marked * above have the number of charge un1ts mu1t1p11ed by the
priority factor for the priority chosen for the job; those marked by ** are

mu1t1p11ed for Top priority on]y

PAPER
Calcomp 580
Calcomp 780
Calcomp 936
Versatec

" Top 3.0
High 1.5
Normal 1.0,
Low - 0.9
Standby .0.8
Zero 0.8

94

~ GRAPHICAL OUTPUT -
J08

HOUR
$2.00 - $4.50:
2.50- 4.50
- 4.50 7.50.
"None. None-

rhe pr1or1ty mu1t1p11ers are:

< FOOT -
. 3.00
.04
14
14

DIRECT ACCESS STORAGE
CHARGING UNIT RATE

Permanent Disks (PERM) Track Day ~§ .00354
Temporary Disks (TEMP) : Track Day . .00191
Timesharing Permanent Track Day . .01158:
Disks (TSPERM) o
Timesharing Temporary - : Track Day .00354
" Disks (STEMP) o :
Permanent 2314 "~ Track Day .00648
Disks (LONG2314) SR : ‘
Database Disks (DATABASE) Track Day - .00458
- CMS Virtual Disks (MINIDISK) . - Megabyte Day - .24000
- Timesharing Database - Track Day ‘ .01610
Disks (TSDATA) o o
- Migration Disks Track Day ' - -.00229
Data Cells ~ Track Day _ .00048
Storage of Setup Disk . . -Disk Month - 13.00

CMS Minidisk Restore ~ CMS Minidisk - . . 1.30

~ MAGNETIC TAPE SERVICES

‘Tape Storage , ~ Tape Month " $.65
Tape Save Request M "~ Request : 2.50 .
Processing .
Withdrawal of New Tape | - Tape ' 25.00
from AMD Stock ' '
Withdrawal of Tape from . Tape , -25.00
AMD Library ' _ ' ‘
Use of Tape to Send Expired Tape : 25.00

Datasets to User

ARPANET USAGE'CHARGE Hour ~$10.00-

6.3.4. 2 Estimating STE Costs at ANL

As in the case of STE job cost est1mates at ‘LBL, we consider REVS and
PERCAM costs. For REVS, we consider file storage charges as well as instal-
lation and production phase costs as determined by the ut111zat1on resu]ts
of the Interim Report ,

6.3.4.2.1 REVS File Storage Costs at -ANL :

Assuming that the installation phase requires a week and that\approxi—
mately 3.35 megabytes of mass storage file .space -is required, we arrive at
the following charge given the ANL rate of $.24 per megabyte- per day:

REVS INSTALLATION MASS STORAGE CHARGE
=3.35 x 7 x .24
= $5.60

. 95

The production phase mass storage files require approx1mate1y 12 mega-
bytes: of disk space wh1ch y1e1ds a charge of:

REVS PRODUCTION MASS STORAGE CHARGE
' 12 x .24

$2.90 per day =

$87.00 per month

The databases (up to 16 of them at an STE site) used in REVS applications
each reqqire between 1.5 and 4.5 megabytes of mass storage, which yields:

REVS APPLICATION DATABASE CHARGE
, => 1.5 x .24 = $.36 per project per day .
': <= 4.5 X 24 $1. 08 per project per day

6.3.4. 2 2 REVS Insta]]at1on Charges at ANL

GJven the .service rates presented in the previous section, we can esti-
mate the cost of installing REVS at ANL as follows, assuming a better than

worst case, 1:1 slowdown ratio for the ANL IBM processors relative to the
CDC 7600: .

SERVICE. : UNITS # UNITS RATE CHARGE

CPU Time " Hour L1667 - $120.00 $ 20.00
Wait Time Hour .5 . $60.00 . $ 30.00
Core "X Kilobyte 170.67 $ 0.141 $ 24.06
CPU Time Hour o ‘
Core x _ Kilobyte 512 $ 0141 $72.19
Wait Time Hour _ o
Per 'Job Surcharge Job 52 ~$ 0.15 $ 7.80
TOTAL = $154.00

Here we have assumed job resource requests of normal priority, one megabyte
of main memory, and a 35 millisecond per EXCP of memory wait time. The key
utilization.data, you will recall, were 604 CPU seconds, 14.54:- megawords
(60-bit word)~of I/0, and 52 -separate jobs spanning a period of 5 work days-
Note. that this figure 1is. comparable to our result for the STE 1nsta11at1on
charge at LBL. , :

6.3.4.2.3 REVS Production Phase Costs at ANL

As%our results suggest, we assume that a fifth of the total charge for a
given STE job is due to the CPU time’charge. This yields the following
breakdown of job costs for the REVS production phase jobs presented in Para-
graph 4.1,

96

o .
=

DAY RUNS /DAY CPU SECS. COST/DAY
1T 2 20 -~ $ 3.63

2 '8 100 ©17.87

3 2 - 35 6.13

4 R 10 1.82

5 3 55 9.62

6 -5 45 8.25

7 1. 30 7 5.15
8 3 54 9.45
9] 22 3.82
10 - 6 9 15.90
1] 18 3.15
12 4 78 13.60
13 3 35 4.62
14 3 85 14.62

TOTAL §120.00

This estimate is a]so comparab1e to the REVS product1on phase/cost estimates
~at LBL. : .

6.3.4.2.4 PERCAM'Job Cost Estimates at ANL

» The two PERCAM utilization studies contained in Paragraph 4.2 present
the results of PERCAM job runs in CDC 7600 CPU:seconds. Assuming a 1:1
slowdown ratio for the ANL IBM processors relative to the CDC 7600 and 5:1
total:CPU-time charge ratio, we have the cost est1mates for PERCAM runs at
ANL shown in. Tab]es 6.7 and 6.8.

6.3.5 "Job Schedu11ng Parameter«Cohsiderations at ANL

we have already ment1oned that ”sma11“ batch- JObS at ANE are those
which request less than 10 seconds of CPU time and less than 500 kilobytes of
main storage. Small jobs will be run during prime time:hours although they
.- will encounter some delay. Some important breakpoint values for CPU time and
main memory are as fo]]ows '

QUEUE - CPUTIME MAIN MEMORY ~ PRIORITY

- Express. : . <= 2 min. <= 250 Kbytes. Top
" ' o v <= 650 Kbytes. - High
. variable .. <= 1500 Kbytes. Normal
. ‘ o - <= 2 Mbytes. ' Low
Standby . <= 15 min. = <= 3 Mbytes ~~ Standby

> 15 min. > 3 Mbytes. . = - Zero

97

Table 6.7 .PERCAM Study Number One Cost Estimates (ANL)

o 20 ATTACKERS VERSUS ONE DEFENDER

e TWO MAN-WEEK EFFORT | |
-~ ONE WEEK FOR LEARNING CURVE, EVENT LOGIC TREES
-~ ONE WEEK-FOR COMPUTER RUNS AND DOCUMENTATION

COST ESTIMATES

CHECKOUT PHASE RUN NO. . CPU SEC. ' COST
o T 11.445 $ 1.9
2 . 20.161 $3.36
3 - 20.133 $ 3.36
4. 20.720 $ 3.45
5 122.019 $ 3.67
621,199 $ 3.53
7 . 22.582 $ 3.76
SUBTOTALS ~ 138.259 $23.04
STUDY PHASE 8 . 22.210 $ 3.70
o 9 22.080 - § 3.68 -
10 22.005 - $ 3.67
11 . 22,023 - $3.67
12 S 2T1.722 % 3.62
_ 13 21.687 $ 3.6
~SUBTOTALS . 131.259 . . $21.90

TOTAL ANL. CPU SECS, = 270 - |
“TOTAL COST STUDY- ONE = $45.00-

98

Tab]e-6.8"PERCAM Study Number Two .Cost Estimates (ANL)

e 18 ATTACKERS: VERSUS 20 DEFENDERS
o FOUR MAN-WEEK- EFFORT :

-~ TWO WEEKS FOR MODULE BUILDING'
~ == ONE WEEK FOR MODEL VERIFICATION '
" == ONE WEEK FOR PARAMETRIC AND SENSITIVITY ANALYSIS
COST ESTIMATES

“MODEL BUILDING RUN NO. - .~ CPU SEC. COST

T . 8.492 $1.42
2 10.318 '$1.72-
3 16191 $2.70
4 16.382 $2.73
5 4.599 $.77
6 18.918 $ 3.15
7 20.567 $ 3.43
8 20.381 $ 3.40
9 16.701 $ 2.78
10 38.583 $6.43
SUBTOTALS 170.072 - - $28.50
VERIFICATION 1 22.219 . .$ 3.70
S 12 20.719. - $ 3.45
13 - 20,917 $ 3.49
14 -11.917 2 $1.99
15 . 12,675 $2.11 -
16 - - 22.435 $ 3.74
SUBTOTALS: - 110.876 - $18.48
- P&S ANALYSIS .~ 17 50.271 - . 8.38
' S 18 0 41.235 . 6.87
19 © - .41.404. © -6.90
.20 - 42.746 - 7.2
SUBTOTALS - 175.656 . $29.26 .

TOTAL ANL CPU SECS = 457
TOTAL COST STUDY TWO = $76.00

99

6.4 HONEYWELL 6180 HOSTS

The only Honeywell 6180 ARPANET hosts are RADC-MULTICS and MIT-MULTICS.
-Both of these hosts are adequate to-the hardware/software requirements of
PERCAM and AUTOIDEF. However, neither-host supports a production quality
Pascal compiler at present. . Honeywell plans to release and support a com-
piler for a language called PYXIS which closely resembles Pascal but which

does not meet the requirements imposed by REVS on a candidate Pascal com--
piler. Apart from software releases supported by Honeywell, there is no
certain source of -an adequate-Pascal comp11er for RADC- MULTICS and MIT-MULTICS.
We therefore do not regard either host as adequate to STE operations.

6.5 REVS RUN COSTS AT NADC

| Table 6.9 presents run cost-and total central processor (CP) time for
selected REVS test cases run on the NADC "B" machine during REVS installation
at NADC in May 1979. Comparable execution times on the CDC 7600 at the U. S.
Army Ballistic Missile Defense Advanced Technology Center (BMDATC):Advanced
Research Center (ARC) are also shown, where available. The NADC configuration
executes 5 to 6 times slower than-the 7600. .The NADC costs include line
pr1nter and service charges ' '

\An approx1mate cost est1mat1ng re]at10nsh1p derived from the data of
-Table 6.2 is:

COST = $6.50 + $0.42 per CP/sec -

Considering an average 5.7:1 slowdown ratio between the NADC machine and a

. CDE 7600, we multiplied the CPU times used in the LBL and ANL estimates for
© REVS product1on runs-by 5.7 and applied the above cost rule. The result was
a $1900 estimate for NADC versus $136 and $120 for LBL and ANL respectively.
Review of the LBL and ANL estimates showed no errors that could explain the
15:1 cost difference between NADC:and the other sites. However, the NADC
charges represent total cost, including all peripheral services, and presume
that service costs are roughly proportional to CP time.

The only conclusive way to verify the relative costs would be to make
actual REVS runs, or benchmark runs with a similar program (in terms of
resource usage profile) at LBL, ANL, and NADC. In the absence of:such runs,
we can only consider the NADC data to be a "high" cost est1mate, and the
LBL/ANL data to be a "low" cost estimate. ' " '

100

Table 6.9 NADC REVS Costs

NADC

37.

17

CTEST CASE 5 COST | CPasec : CPu-Sec
1. RADX TEST DB-ANALYZE DATA FLOW. | $43.03 | -90.69 --
2. SAMPLE SIMULATOR (RUN 1) 37.54 | 88.78 --
3. SAMPLE SIMULATOR (RUN 2) 3760 | 33.86 --
4. BUILD NUCLEUS 1642 9.20 4.55
5. BUILD TRACKLOOP 5717 | 115.52 | 20.18
6. BUILD RADX TEST DB 2540 | 5.5 9.43
7. SAMPLE SIMULATOR (RUN 3) .53 | 8610 | -
8. LIST ALL-BALLOON TRACK 11.74 | 16.05 3.20
9. AATEST | 15.42 | 16.51 | 3.93
©10. LIST PERMISSIONS (RADX 3) 5.98 5.5 | 1.31
11. LIST RSL (RADX 2) 23.48 40.57 7.84
12. TRACKLOOP ERROR DETECT (RADX 6) | 32.11 | 53.42 .| 10.81
13. TRACKLOOP ANALYZE ALL 22.56 | a3 | 7.4
14, TRACKLOOP ANALYZE DATA FLOW | 58.09 | 127.76 | 21.28
15. TRACKLOOP PUNCH & PLOT (RADX 4)° | 30.39° | 55.70 9.40
16. BUILD BALLOON TRACK - | 2447 | 424 --
17. LIST ALL-TRACKLOOP 23.40

7.63

- 10

6.6 ARPANET HOST CONCLUSIONS

‘As d1scussed in the prev1ous paragraphs, there are three CDC ARPANET
nodes and five non-CDC ARPANET nodes that have sufficient resources to support
the STE, and which either have adequate Pasc¢al compilers or cou1d potentially
be provided with adequate compilers to support REVS.

One of the.CDC‘nodes, NADC, a]ready has two STE tools, REVS and PERCAM,
installed. The addition of AUTOIDEF would not appear to be difficult, pro-
vided that the tool is portable, as -claimed. The costs of running at NADC .
may be higher than similar costs at other sites, but this cannot be verified
with available 1nf0rmat1on The other two CDC nodes, BNL and LBL, operate
with versions of the SCOPE operating .system, under which REVS was developed.
However; since these nodes use different versions of SCOPE, and may have
hidden site dependent features, installation of REVS at either site may re-
quire one~half to two man-years of adaptation effort, depending on' the details
of the operating system. Opt1m1st1ca11y, the adaptat1ons would be minimal.
Adaptation to run at nodes using NOS or NOS/BE would definitely require effort

at the upper end of the range.

Of the non- CDC nodes, ANL and UCLA CCN have the most powerful capabilities
and, apparently, adequate Pascal compilers. Previously, REVS has not been
transported to an IBM mainframe, but building on the experience of previous
CDC transfers and transport to the VAX 11/780, the job could be achieved with

less than two man-years of effort.

A s1m11ar transfer could be ‘made to the Univac nodes, NOSC-CC and NWC,
but there are rema1n1ng issues of Univac Pascal compiler adequacy. If existing
comp11ers have to be significantly modified to support REVS, the transfer cost
would increase substant1a11y

DEC VAX 11/780 hosts are just beg1nn1ng to appear on thé ARPANET, and
several; are contemplated Many of these will run under the Paging UNIX operat-
ing system, and would require an amount of STE software modification that
cannot be est1mated|w1thout a detailed analysis of UNIX beyond the resources
of this, study. The one existing node operating under the VMS operating system,
NUSC, is marginal. bECause of its 1 megabyte memory. Upgrade of the memory
size to 2 megabytes or more would make NUSC an attractive STE site, because
REVS is being transferred to the VAX 11/780 by BMDATC, thus saving adaptation
costs forthe STE. ~ It is highly probable that many of the popular 11/780s
will be connected eventually to the ARPANET, and REVS can be readily installed
on those nodes with VMS and sufficient memory. Installation of AUTOIDEF does

not seem to be difficult, and PERCAM is operating on the VAX at BMDATC.
|

The benefits of using an existing ARPANET site must be weighed against
the potential d1sadvantages The disadvantages are: 1) potential lack of host
availability when needed 2) inability to tailor the host specifically to STE
needs; and 3) 1nab111ty to make classified runs without establishing a secure
subnet -and acqu1r1ng Private Line Interfaces (PLIs) at $55,000 + per copy.

102

_ _7.0 SURVEY OF_ALTERNATE'STE HOSTS

_This section presents the results of Task 3 of the STE Study. - The main
objective of Task 3 was to survey commercially available, off-the-shelf com-
puter systems, using a mainframe of a type that is being or has been inter-
faced to the ARPANET, with the capability of supporting the STE. A second

- objective was to investigate the security implications of operating the STE

in a single-level, dedicated security environment.

~ Because the dominant families of large mainframes were effectively con-

sidered under Task 2, in Task 3 we concertrated on high-performance, economi -
~cal minicomputers, and.midicomputers. After initial analysis we concluded
that current 16-bit minicomputers could not access the large address space
required by REVS without unacceptable performance penalties. Therefore, more
detai]eq analysis concentrated on 32-bit midicomputer families. The only
~appropriate machines: of ‘this type currently on-the ARPANET are DEC systems.

- For comparative purposes we broadened the investigation to consider other
major midicomputer systems that might be interfaced to ARPANET in the future.

Paragraph 7.1 discusses methods of investigation for Task 3. Paragraph
7.2 summarizes features of the systems investigated and discusses issues in-
volved in the analysis. Paragraph 7.3 presents our rationale for selection of
the DEC VAX 11/780 as the preferred system. Paragraph 7.4 discusses color
graphics capability for the STE. Security issues are summarized in Section 8.

© 7.1, METHODS OF INVESTIGATION: TASK 3

Information on the functional characteristics of a wide:range_of‘

 32-bit midicomputers was gathered from TRW's Minicomputer and Informa-

tion Technology Laboratory which maintains current data on available
minicomputer hardware and software.. The criteria used in sclecting
alternate midicomputer- host architectures were the same as the hardware
- and software functional requirements imposed upon candidate ARPANET
system hosts under Task 2 except for additional consideration of stand-

- alone and potentially secure STE operations as discussed in Section 8.0.

We also cite trends and particulars that were provided by vendor personnel.

. - Among midicomputers,. we se1ectéd for initial consideration only
“those which satisfy the following criteria: ‘ g

0 Avai1ab11ity of operating systéms which méetfthe functional
~ _requirements for an STE support environment.
e Network Communications hardware/software -support within
' such an operating environment for potential ARPANET
operations. : : | A
- e Availability of FORTRAN and Pascal compilers within such
an operating environment which satisfy the translation
requirements of each tool of the STE.

103

These cr1ter1a significantly -reduced the number of candidate host
machines for stand-alone STE operations.

Cost considerations and the

availability of potentially adequate Pasca] comp11ers T1m1ted the cTass
of candidates to the following machines: : .

DigitaT}Equipmeht: VAX 11/780 V
Harris: H800 . o -
Perkin Elmer: 3244, (Interdata) 8/32
"Prime: 750 y . :
SEL: 32/77

" QOther m1d1computers are known to e1ther Tack PascaT comp11er support orv
to exceed. the cost of these machines - by a Targe factor : :

7.2 COMPARATIVE DATA ON - ALTERNATE STE HOST MACHINES

. Table 7.7. presents the. features that qua11fy each of the cand1date'
STE m1d1computer host chh1nes ; . ;.

Table 7.1

Condidate,MidToohputer Hosts
MIPS 1/0 RATE MB/SEC PRICE | W/MBs | . NTWK COMM

DEC VAX | . | 8 (massbus); 1.5 (un1bus:‘ | _ DECNET
11/780 | 1.5 | 13.3 (dna chamel) - |- $225,000| 2 “(OPTIONAL)
Harris 1 (sTow.dev1ce); 19 in, - R

H8oo | 2.6 7.9 out (high speed'dev) $183,000 1" o

PE o 4 DMA Channels . " R ‘DATUEB
3244 TT.4E 10 - 40 MB/SEC $169,000(2 CMS'CORP.

PE T DMA Channel’ - N DATUEB
8/32 .2+ 8 3 MB/SEC $120;000‘ 1 _ CMS CORP.
Prime f High Speed Dev1ce " o " PRIMENET

750 | .895 8 input, 5 output $186,000 | 2 (OPTIONAL)
SEL | High Speed Device 3.2: - : © 1IN HousE
32/77 .98 -$110,000 [2.3 X.25+

T-DMA Channel @ 26.6 M/sec.

104

The table does not reflect certain important facts about the candidate
midicomputer STE host systems. The available Pascal compiler support for-
.some of them is neither as robust nor as field proven as it is for others.
Moreover, the network support software provided by any two of the vendors
differs in point of function and design objectives. The main concerns are
that global as well as local networking be supported and that the global
networking support be general enough at critical module levels to accommodate
extensions to 1ncorporate ARPANET protocols if these are not already supported.
A further concern is the extend to which a choice of a g1ven midicomputer
system furthers RADC's objective of STE technology transfer. Here the sheer
number of such midicomputer systems available to potential STE users is a
primary cons1derat1on

From this standpo1nt the fo110w1ng caveats should be registered;
first, those regarding Pascal support. The compilers available to the
cand1date m1d1computer systems differ in their-age and exposure to pro-

" duction environments. DEC Pascal has been available for less- than a year.

Harris Pascal has not been released yet and is in the latter phases of
1mp1ementat1on Prime and SEL Pascal are also moderately new. By =~
comparison, the candidate Pascal comp11er for the Perkin ETmer machines has.
been around for some time, originally in a Univac incarnation. Documentation
" of the various compilers typ1ca11y touches on the more salient language
features and operating system interfaces ‘that are supported but provides
little in the way of critical information such as the degree of opti-
“mization achieved in the generated target midicomputer machine code or

the friendliness of the host operating system to the Pascal software
development process.” For instance, the SEL Pascal user's manual focuses
primarily on-the grammar.which the SEL. compiler recognizes and mentions
very Tittle about the Pascal .user's’ interface to the operating environment,
‘benchmark comparisons of SEL Pascal to.SEL compilers for other languages,
~limitations on the amount of mach1ne code -used to realize primitive types,
procedures, compiler and run-time stack space, and other "messy details"
"essential to its usefulness in a product1on environment. Much the same s
true of DEC Pascal, as experiences in porting RSL/REVS to the VAX have shown.
Moreover; new compilers, like all other significant pieces of new software
are bound to have bugs. These concerns put the NOSC Pascal compiler for
the Perkin Elmer machines in a good 1ight. However, the Perkin Elmer
compiler, Tike its NOSC ancestor, does not support the DISPOSE service.

Next, there are caveats about network1ng software. DECNET was
or1g1na11y designed and implemented for local networking within a tightly
coup1ed cluster of communicating processors. Unlike PRIMENET, DATUEB and
the in-house development of networking software under way at Harris, which
also support local networking, DECNET does not support global networking
among distant host processors. Moreover, the global. support provided by
the others conforms to the X.25 packet-switching standard. Apart. from
this advantage, there is some question about the generality of the global
networking support provided by the non-DEC host systems. PRIMENET, for
instance, may well be highly modularized and parameterized since it supports

105

a:wide variety of packet- sw1tch1ng network standards, viz., the United
States TELENET. and TYMNET, the Canadian DATAPAC, Great Britdin's Inter-
national Packet Switching Service (1PSS), and France $ TRANSPAC as well as’
the European. Packet Switching Network, EURONET. Presumab]y, ARPANET support
would not be too difficult to achieve within the Prime networking softwarée’ -
environment. By comparison, the documentation on network1ng software for
Perkin Elmer, SEL, and Harris systems does not indicate the sort of genera11ty
which Prime has obviously advertised. But this.may merely reflect a lack -

of appropriate data which, in turn, may reflect the fact the PRIMENET has-
been on the market longer than the network1ng software prov1ded by the other
vendors that support global network1ng

Finally,| there are considerations due to the objective of ‘STE tech-*
no?ogy transfer. This constraint may well be the most significant of all.
There are more DEC VAX 11/780s .than there are of any of the other candidate
midicomputer STE host systems. . Moreover, a]though DEC neither deve]oped
nor supports it, there exists a substantial and 1ncreaS|ng amount: of g]oba]
networking software support- of the ARPANET protocols. ' This software has
been developed Targely by ARPANET host systems personne] operat1ng under
the standard DEC VMS operating system or the Berkeley, Paging UNIX operat1ng
system. Most of these personnel work in non-secret environments and m1ght '
thus be-in a position to transfer their network1ng software techno]ogy in
the 1nterests of SFE techno]ogy transfer. :

7.3 MIDICOMPUTER HOST SELECTION

- On cons1derat1on of the forego1ng issues, we be11eve that the DEC VAX
11/780 is currently the best candidate to host the STE. -Its immense popula-
rﬂty makes it an appropriate vehicle for.widespread technology transfer afford-

able by many ‘users, and seems to ensure: -availability of better:ARPANET support.
Because REVS and PERCAM are hosted on the-VAX; -software. transfer costs are
confined to site installation.changes and transfer of AUTOIDEF.- Early develop-
ment of ADA compilers for the VAX will permit:an early Tanguage conversion. for
STE tools, if desired. On the whole, although 170 bottlenecking is known: to
exist, the VAX has high performance and suff1c1ent memory capac1ty p]us an -
adequate Pascal comp11er : N ,

The next best ‘choices are the Perk1n E]mer 3244 and Pr1me 750 systems
The PE 3244 offers higher performance at a Tower price, and is a class of
machine more widely used in the DoD-community. . However, the existing Pascal
compiler needs augmentation sicne it Tlacks the DISPOSE:function.- Kansas State
University has recently developed a Pascal compiler for: Perkin E]mer machines,
but details of the language implementationihas not been confirmed. . The- Prime
system is slower and costliér than the Perkin Elmer system but has several:
attractfve features ‘First, it is aimed at a time-sharing, commercial data
base environment. Its. nat1ve data- base management system uses a-CODASYL schema,
as does the REVS and AUTOIDEF tools. :Second, it appears to have an .excellent
Pasca1 comp11er meeting REVS requ1rements Third, it supports a wide variety

106

of commec1a1 networking standards ‘and may be easily adaptable to an APRANET .
interface. However, Prime aims mainly at the commercial market, and the DoD
community seems to have overlooked Prime systems to date. ‘ o

We rank the Harris and SEL systems behind the above candidates, and
prefer the Harris-over the SEL because of its exceptional CPU speed and 1/0
rate combination. However, neither of these systems have’ been connected to

_the ARPANET, they are not widely used as yet, and there are many quest1ons
remaining about their Pascal compilers and networking capab111t1es

A DEC VAX 11/780 conf1gurat1on should include at least two megabytes of
main memory. Basic DEC VAX systems include a single disk and a single tape -
unit of the purchaser's choice, two Massbus adapters and a DZ11A 8-line asyn-
chronous multiplexer. The Tow speed TEE-16 (45 in/sec) tape unit seems ade-
quaté for the STE. Disk configurations should be ‘chosen for overall system
f1ex1bi11ty and a view toward long-term needs. Three RM-03 disks are a
minimum requirement, but Targer RM-05 disks would offer growth potential.

- This disk configuration is a matter of preference as Tong as the disks are .
removable (for secure operations, a-requirement).' ‘Among DEC users the disk .
drives manufactured by CDC (e.g., the RM series) seem to enJoy a better repu-

- tation than others. : a Co

- The LP11-DA line printer (132 column, 96 character, 660 lines/min.) is-
adequate for STE use. Either VT100 or VT52 alphanumeric terminals are accept-
able. If a card reader is desired, the CR11 (300 cards/min.) seems adequate.
Software shouid include the VMS operat1ng system,. the FORFRAN comp1]er and
the Pascal: comp11er

7.4 STE COLOR GRAPHICS TERMINALS

o Candidate color graphics terminals meeting the STE requirements in Para-
graph 3.1.4 were selected from the Data Pro EDP Buyer's Bible and by contact
with various vendors. Four terminals that were in the desired cost range

~ were first identified:

e Tektronix 4027
e DEC VSI11

o Ramtek 6200A -

e Three Rivers CVD/2.

The Tektronix 4027 is-the preferred choice. It meets all of the require-
ments in Paragraph 3.1.4 and seems to be a popular color terminal at ARPANET
nodes (see Appendix-A). It is the only "low cost" co]qr terminal with 480 x
640 resolution, compatible with that at the BMDATC ARC. This format also seems
ideal for the AUTOIDEF disp1ays, and conversion from a Tektronix 4014 to a
4027 would probably be easier than to a terminal from another manufacturer.

The 4027 can be operated both locally and remote.

107

The DEC VS11 is just becoming available. Its advantages are design for
use with DEC computer systems and capability to use a 19 inch color monitor.
The principal disadvantage is its 512 x 512 resolution. REVS and AUTOIDEF
displays would have to be reformatted to fit a square format. A Ramtek 6200A
has Tower resolution (256 x 512).than is desirable, but TRW experience with
it-on another contract indicates that this is on the borderline of adequacy.
for-STE use. No detailed information was available on the CVD/2. However,
its.cost for comparable capability, lack of cursor display, and uncertain
interface to a host probably make it a fourth cho1ce

A Tektronix 4027 STE graphics 1nsta1]at1on should have two 4027 terminals
shar1ng a Tektronix 4632 hard copy unit (with 06 enhanced gray scale opt1on)
_rhe 4027 opt1ona1 features suited to STE use are: ‘

® fﬁOpt1onf21f— 16K bytes add1t1ona1 display memory.
'eil"Opt1on-28'F 144K bytes’ add1t1ona1 graph1cs memory
Qev::Opthn 31 -, Character Set Expansion.
e/ "Option 32 - Ruling Characters.
o Optfon'4é - Video Hardcopy/V1deo Output Interface

The approx1mate cost per 4027 in this configuration is $16K, and the 4632
hard,copy unit cost is approximately $5K. Thus, total cost for the STE
graph1cs 1nsta11at1on is- about $37K, plus cost of modems and cables dependent
on.the 1ocat1on of the terminals, and the 1nterface with .the STE host, compu-
ter. Month]y maintenance costs are extra. (Note prices are subject to
change and, in 1980, are unstable for all types of DP'equipment.)

- 108

- .8.0 STE SECURITY. CONSIDERATIONS

This section briefly examines some of the implications of .operating the
STE in a single-level, dedicated rmode (i.e., where a single classification
level is concerned and all authorized users have need-to-know and clearance
for all data in the system). This mode is a limited subset of the general
multi-level security problem. "TRW has prepared a detailed treatment of re-
quirements for multi-level computer security systems under a separate con-
‘tract. The reader is encouraged to consult [10] for appropriaté requirements
for single-level dedicated mode systems and pertinent DoD regulations.

8.1 GENERAL SECURITY CONSIDERATIONS

Security in current classified data processing systems is maintained

~ through use of conventional security measures -- clearance of users to the
highest Tevel, physical security of the computer.installation and terminal
locations, administrative security procedures governing access to and use of
the data pr0cess1ng systms, encryption of communications, emanation security
-- plus process1ng Timitations and access control software. With these
security measures, processing of compartmented information is Timited by
security regulations - DoD. 5200.28 and DCID 1/16 -- to one or the other of
two security modes -- dedicated, where all users with access to the system
have both a security clearance and need-to-know for all classified material
then contained in the system, and system high, where all users with access
"to the system have a security clearance for the highest classification and
most restrictive type of material contained in the system but at least some
users do not have a need-to-know for all classified material contained in
~the system. In either of these modes, access to the system by users not
cleared for all ‘compartments or classifications is not allowed. Because com-
puter systems processing compartmented data must be either dedicated com-
p]ete]y to one or the other of these modes or. scheduled for separate process-
ing periods for different compartments, t1me11ness of process1ng is 1imited

- and operat1ng costs are increased.

Contemporary computer systems do not contain the security controis

" needed to allow processing in a true multi-level secur1ty mode and they

generally contain security vulnerabilities allowing evasion of any security
~controls. The principal vulnerabilities are in the operating system software,
which must control concurrent processing and resource sharing for a large

- number of users, provide user services, and interface directly with the hard-
ware. The complexity of operating systems is such that their 'structure and
functioning has not been well understood, leading to design and implementation
errors and hidden capabilities not specified in the design. A further com-
plication is that operating systems are tested by the manufacturer on a limited
number of machine configurations, but most users have .a configuration differing
in some way from the one on which the operating system was tested.

109

Most contemporary ‘resource sharing computer systems are not secure

- because security was not a requirement of the initial hardware and software
design and because there was not a generally accepted computer security
definition usable as a'basis for a secure design. Since the Air-Force has
effective means for implementing personnel, physical, communication, emana-
tion, and procedural security, the heart of the computer system secur1ty
problem is the security certification of the access controls 1n the ooerat1ng
system and supporting software '

8.2 STE IMPLICATIONS

An STE site with secure processing requirements-will nominally alternate
between secure and open access processing modes. When the STE is operating
in a s1ng]e level -dedicated mode, compartments within, that mode are not an
issue. - Therefore, the problem is-that of precluding. access, direct or indirect,
to any and all parts of the system by.unauthorized user ‘while the. STE 1s per-
forming operat1ons on cIass1f1ed data . : ‘

The most obvious avenues of. penetrat1on can be closed by trad1t1ona1
physical and emanation security measurés (e.g., limited personnel access,
positive disconnect of all external communication lines, Storage of cIass1f1ed
data on separate dismountable media, and electromagnetic. sh1eId1ng of the
facility where required). However, more indirect avenues of access; through
the operat1ng system, are more d1ff1cu1t to cIose w1th conf1dence :

In the absence of an’ expens1ve security kernel within the operat1ng
system, the only high-confidence means of prevent1ng indirect access is to
part1t1on the system operating in classified mode and:the system Operating
in open access mode into two disjoint systems. This would entail separate
copies of the operat1ng system for each mode,}purg1ng of all residual data
at.mode transitions, termination and vecreation of the system at mode ‘transi-
tions under the appropriate 0S copy, and physical removal of all media con-
taining classified mode programs and-data, including the OS cony, ‘during: open
access mode, under str1ct operator procedures _

110

9:0 REVS IMPLEMENTATION LANGUAGE CONVERSION EVALUATION

The purpose of Task 4 of the STE study was to evaluate the feasibility
of rewriting REVS, currently implemented in Pascal, in one of the DoD approved
Higher Order Languages (HOL). The cand1date Tanguages are as follows: -
' o FORTRAN |
e COBOL - :
® JOVIAL (J73) (MIL-STD-1589A)
e ADA.

A brief descr1pt1on of these 1anguages are presented in Sect1on 9.1.

. In Sect1on 9.2, we 1dent1fy the current REVS features/capab111t1es which
would be affected 1f REVS were to be converted to one of the candidate lan-
guages. A discussion of the ability of each candidate language to adequate]y
support current REVS features/capab111t1es is also provided.

In Section 9.3, we discuss the cost (person-months) and schedu1e esti-
mates for a feasible conversion. Also, we identify any software tools which
- could be ut111zed/deve1oped to aid in accomp11sh1ng a cost- effect1ve con-

- version.

In Section 9.4,.we“address the issue of the affect of an a]ternate
implementation language on the Tife-cycle costs of REVS in the STE where the
tools will be under continuous enhancement and modification. Finally, in
‘Section 9.5, we summarize the eva]uat1on and present our recommendat1on

9.1 CAND[DATE LANGUAGE SUMMARY

This section conta1ns a br1ef descr1pt1on of the design concepts and
1mp1ementat1on techn1ques of the candidate 1anguaqes

"FORTRAN Language-

A FORTRAN program consists of-a main program and.a set of subprograms,
each of which s compiled individually, with the object programs 1inked during
loading. Each subprogram is compiled into a strictly statically allocated
area containing the compiled executable code, system-defined data areas, and
global data areas :(COMMON blocks). No run-time storage management is provided.
Subprograms communicate:only by accessing COMMON-blocks, passing parameters
(call by reference), .and passing control through .nen-recursive, non-nested
subprogram calls. Data structures consist of multi-dimensional homogeneous
(1ength and type of each element in' the structure is the same), fixed-size arrays.

COBOL Lang:qlf

COBOL is a h1gh1y structured 1anguage des1gned espec1a11y for business
~ applications. An important characteristic is the English-like syntax which

111

makes most programs readable enough to be largely self- document1ng Numerous
optional* "noise words" are- prov1ded in the language to improve readability.
‘The Tanguage design is based on static run-time structure (no dynamic run-time
storage management). Subprograms are allowed but with these restrictions:

e Data canﬂbeéshared‘onJy by passingiparameters'(ca11—by-name)3

e Files cannot be shared between a main program and a subroutine
(must be explicitly opened/closed by each).

® Subprograms cannot be nested or called recursively.

Most COBOL programs are written as.a 'single routine using a common global
referencing environment for the entire program. The PERFORM statement allows
the COBOL programmer to organize code into functional units that can be
invoked from different points within the .same program unit. With this feature,
true. subprograms (with parameters and local variables) are infrequently used.
Multidimensional homogeneous (length and type of each item of the structure is
-the same), and heterogeneous (structure items can‘have varying 1engths and
types) fixed-size data structures can be constructed

JOVIAL J73 Language>

J73 is a "block- structured“ 1anguage composed of a ma1n program any num-
ber of CCMPOOLs (coemmon pool of.data/subprogram declarations sharable: between
separately compiled subprograms), and a set of subprograms. Subprograms -can
be either disjoint, having no portion in common, or nested (static nesting),
one-subprogram completely enclosing the other: :Subprograms can also be recur-
sive.” Dynamic run-time storage management is provided to ‘support -recursion
since the maximum number of recursive activations,-and*hence the additional
storage spaces’ cannot be determined at- compile:time. - Subprogram parameter
passing is accomp11shed by ca]] -by-value, ca11 by reference or ca]] -by-value-
" result. . e ,

, Like Pascal, J73’is-a»“strongly typed"«]anguageJ;'Every data object
declared in-a program must-be associated with a "type",.which defines its
logical properties and the .operations that can be performed on the object.
J73 supports. comp]ex mu1t1 d1mens1ona1 homogeneous/heterogeneous data struc-

tures

ADA Language ﬁ

" The proposed ADA- programm1ng 1anguage is a1so a’ ”b]ock structured“

1anguage being designed .in -accordance'with DoD requirements. - It is ‘influenced
-by the Pascal and JOVIAL family of languages. :An:ADAvprogram is a.-sequence of
higher level program units, which can be. compiled.separately. --Program units
‘may ‘be subprograms (which define executable ‘algorithms), package :modules
- (which define collections-of entities), or task modules .(which define.con-
current computations). Subprograms can be nested (statically) and can have
parameters (call-by-value, call-by-reference, and call-by-value-result).
- Also, subprograms can be recursive (dynamic nesting). A package module can be
used to define a common pool of data (1ike JOVIAL: COMPOOLs), or a collection
of related subprograms. - . SO S

112

ADA is also a "strongly typed" language requiring each data object.to be
associated with a specific "data type". Like JOVIAL J73, multi-dimensional
homogeneous and heterogeneous collections of data items can be defined. Also,
like Pascal, complex data structures can be created dynamically during pro-
gram execution (dynamic run-time storage management).

9.2 CONVERSION IMPACT UPON EXISTING REVS FEATURES

The features and capabilities of REVS which are dependent (either directly
or indirectly) upon the current implementation language, Pascal, are presented
in this section, with an evaluation of the adequacy of each candidate language
to support these features/capabilities.

9.2.1 REVS Program Architectures

REVS is a highly structured software program. The goal of the REVS
designers was to separate complex operations into several well-defined
functions (modules), each of which in itself could be declared to be correct
by inspection. Each function, or module, is decomposed into smaller and
smaller units (procedures) until the lowest level of the function is speci-
fied. Pascal, a "block-structured" Tanguage, provided the original designers
with the module features desired. A block (or procedure).is allowed to have
one or more procedures completely enclosed :(statically nested) within itself.

The usefulness of statically nested procedures (i.e., subprograms) lies
not just in the potential it provides for modularizing the computations, but
in its ability to protect data that are the exclusive concern of a specific
function/module from encroachment or contamination by other modules. For
~example, data declared in a procecure is said to be local to that procedure,
and shareable (global) with all its' nested (or inner) procedures, but not
- shareable with outer or non-nested procedures. If the same data name is
- declared in both an outer and inner procedure, the outermost variable becomes
inaccessible to the inner procedure. ,

The current 1mp1ementat1on of the REVS program itself consists of 1108
Pascal procedures with nine levels of static nesting.

- FORTRAN Implementation

A FORTRAN implementation would require that REVS' current modular archi-
tecture, utilizing statically nested subprograms, be redesigned since FORTRAN -
does not support this feature. Each nested subprogram would have to be un-
nested, with careful attention given to the shared data. For example, a
Pascal data object declared in a procedure is shared by all procedures nested
“within that procedure. A FORTRAN implementation would requ1re that all
shareable data be made global (declared by COMMON st?tements , Or passed as
parameters between subprograms. FORTRAN global data'is allocated a fixed
amount of storage space at compile time. Since al] data (approximately 5000
Pascal identifiers requiring 209K bytes of storage space) in the current
implementation of REVS are allocated dynamically in reuseable space (see
Section 9.2.2), a FORTRAN implementation would significantly increase REVS
run-time memory requirements.

13

A FORTRAN imp1ementation would require a total redesign of the. REVS
architecture plus increase the run-time storage space requ1rements, without
adding add1t1ona1 capability or features.

COBOL Imp1ementat1on

A COBOL implementation of REVS would also require a total redesign, and
because of COBOL's English-Tike syntax which makes programs self-documenting,
a s1gn1f1cant amount of additional code would be produced increasing con-
version costs. : -

/ ' : N ‘ :

. The COBOL language does not provide the nested subprograms, and it limits
data sharing between subprograms to parameters-passing only. Therefore, REVS
would have to be re-written as a single COBOL program with all 5000 data
identifiers declared global in the DATA DIVISION section (increasing run-time
memory requirements), and all existing REVS procedures (1108 of them) replaced
by in-1ine paragraphs of.code executable by the COBOL PERFORM statement.

JOVIAL (J73) Imp.ementat1on

The current REVS modu]ar arch1tecture could be implemented w1thout change
with JOVIAL J73, s1nce stat1ca11y nested subprograms are supported.

ADA Imp]ementat1on

The current REVS modular architecture can be 1mp1emented without change
with the proposed DoD standard 1anguage ADA..

9.2.2 Dynam1c Storage Managegent

The REVS implementation 1anguage provides for two types of memory storage
‘management; static and dynamic. Static management is utilized during program
compilation to allocate a fixed amount of space requ1red for the program -
1nstruct1ons and input/output buffers. The storage space required by the pro-
gram's data structures and variables is not allocated until required during
‘program execution (dynamic allocation). Dynamic storage management involves
the reuse of storage space for multiple purposes dur1ng program execution.

Two types of dynamic storage allocation are used in the current 1mp1ementat1on
of REVS -- stack and heap allocation. :

At the start of REVS execution, a sequential block of memory is reserved
for use as a dynamic run-time stack (120K bytes). Storage space is allocated
on the top of this stack automatically (stack storage management) each time a
procedure is executed/activated. This space (activation record) is used to
record procedure-linkage information, the temporaries required for expression
evaluation, parameter transmission, and space for local data objects declared
within the procedure. 1If an executing procedure calls another, or itself
(recursive call to be discussed in Section 9.2.3), a new activation record is
placed on the top of the stack (dynam1c'nest|ng of activation records). Upon
procedure term1nat1on, that procedure's activation record is popped off the
stack with resumption of the or1g1na1 Drocedure

114

The run-time stack of'activation records grows upon entry -to an inner.
level of dynamic nesting and shrinks on exit therefrom..

Since REVS stores all local/shareable data within the dynamic run-time
stack, rather than statically at compile time, a significant.amount of memory
space is saved. In the current REVS design, the maximum number of "different"
procedures active at any one time is only 29 (this number does not account for
multiple activations of,a recursive procedure). The data storage space reguired
if all 1108 REVS Pascal:procedures were active at one time would be 209,257
bytes, which is 89K bytes larger than the current stack space allocation of
120K ‘bytes. Dynam1c stack allocation of memory space not only reduces the
total run-time memory requirements, it also provides a mechanism for support1ng
recursive subprogram ca]]s (see Section .9.2.3). -

The second type of dynamic storage management used in REVS.is heap storage -
allocation. A heap is a block of memory within which pieces can be allocated
and deallocated explicitly through Pascal language constructs (NEW and DISPOSE).
The built-in function NEW is used to obtain space dynamically during program
execution. This space (data structure) is not referenced directly by name,
but indirectly by a pointer variable (points to the location containing the
 value). Heap space allocation is useful for implementing data structures whose
size varies as the program is running. For example, linked-1ists where the
number of elements is unknown at compile-time. Linked Tists are extensively
used by the RADX Function. Their size is dependent on both the operation to
be performed and the size of the application data base. Once this space is no
longer needed, the built-in function DISPOSE is used to recover the Space for
reuse. _

REVS implementation of dynamic storage allocation combines thée heap. and
stack within a common block of memory (120K bytes), but starting at opposite’
ends and growing toward the middle. This feature provides for economical use
of dynamic storage space. - '

FORTRAN Imp1ementat1on

FORTRAN was designed for str1ct1y static storage a11ocat1on To convert
REVS and maintain existing capab111t1es, the fo110w1ng re- des1gn would be
required. -

e All data must be allocated storage space statically at
: comp11e time rather than dynamically during execution.’

o All variable size data structures would have to be redes1gned .
either by specifying a maximum fixed size or by us1ng secondary
storage such as a disk file. In either case, a major redesign
of the affected subprograms/data strucfures would be required.

8 A fixed tradeoff between memory space and run-time performance -
would have to be made. This would result in unused memory Space
for small applications and operation-dependent performance
degradation for large applications.

119

}

COBOL Imp]ementat1on

The COBOL |arguaoe does not support dynamic memory a11ocat1on Therefore,
the same changes/modifications as were described for a FORTRAN implementation

‘would be required if REVS. were converted to COBOL.

A‘JOVIAL J73 Imp]ementat1on

The JOVIAL J73 1anguaqe supports dynam1c stack allocation but not heap
allocation. Therefore, the stack would have to be resized to meet dynamic
stack-only requirements since stack and heap space would ro. longer be obtained

-from a common block of memory . A scheme for managing a statically defined

block of storage space through the use of data structure overlays would have
to be des1gned to replace the current heap management logic. The data struc-

‘tures size (for example, a linked-1ist) will be statically fixed at compile

time. Therefore, a tradeoff will have to be made between memory space usage
and process1ng capab111ty 4 A

ADA Imp1ementat1on

The ADA Tanguage supports both stack and heap dynam1c management. .One
difference that currently exists. is that ADA doesn't provide a-language con--
struct. for explicitly d1spos1ng/re1ea51ng allocated dynam1c space. Once
dynamic variables are allocated heap space, they remain allocated until the

- program/subprogram unit containing the access/pointer:variable definition

(this varjable points to the location in the heap.-containing the data), com-
pletes execution. In some ADA implementations, this space may be recovered
for reuse” through a garbage collection technique. Without a language con-
struct similar. to the Pascal DISPOSE construct, the REVS heap management logic
will have. to be redes1qned : S

9.2.3' Recursive Subprogram Calls

Pascal permits procedures to invoke themselves, either directly, or in-
directly via another procedure. These procedures are said to be recursive.
Many algorithms are most naturally. represented using recursion; for example,
traversirg -binary trees-in the REVS data base. Historically, because of the
influenceé of FORTRAN and COBOL which do not support recursion, recursive
algorithms have been neglected for-an iterative solution.

Recursive execution of a subprogram requires that the changeable infor-
mation (local variables, etc.) associated with a subprogram being executed be
stored separate]y for each instance of execut1on/act1vat1on As was described
in the previous section, a dynam1ca]1y managed run-time stack is utilized
within REVS to store a procedure' s changeab]e information/data for each
act1vat1on : : :

: REVS uti]iZes recursive 1ogicAextensive1y. The following REVS functional
modules have the indicated number of recursive subprograms.

® REVS Executive (12)
® RSL Translation (56)

116

) Requiremehts Analysis and Data Extraction (31)
® Interactive R NET Generation (3)
© Simulation Generation (8)
@ CALCOMP Plotting (1).
0f the 1108 Pascal procedures, 111 of them are recursive. Also, the Compiler

Writing System, used to generate the RSL Translator, has one recursive pro-
cedure. : .

FORTRAN Implementation

FORTRAN does not support recursive algorithms. In order to support re-
cursion, FORTRAN would require a dynamically created run-time stack of
subprogram 1inkage data (return addresses, etc.). Since FORTRAN is not im-
plemented with dynamic storage management, recursive calls are illegal.
Therefore, in order to convert REVS to FORTRAN, the 111 REVS recursive sub-
programs would have to be redesigned to solve the specific problems
non-recursively.

COBOL Imp]ementation

The COBOL language, 1ike FORTRAN, doesn't support recursive algorithms.
See discussion under "FORTRAN Implementation" above. :

JOVIAL J73/ADA Implementation

Both 1énguages provide for recursive subprogram calls.

9.2.4 Structured Programming Techniques

Structured programming constructs are used to provide code that is easier
to read, understand, debug, and maintain. Structured programming, in its most
1imited definition, consists of a limited number of constructs that specify
the f]ow of control of the program. . For example:

(] Sequences of two or more Qperations

e Conditional branch to one of two operat1ons and return
" (IF a THEN b ELSE c).

] Repet1t1on of an operat1on while a cond1t1on is true
(DO WHILE).

Each of the three structures itself represents a proper program. Using com-
binations of these basic structures, any program can be built.. REVS also
includes additional Pascal constructs where necessary to provide more readable
and self- document1ng programs, more efficient programmlnq, and programmer con-
veniences. ‘

For example, the CASE statement is used to select bne»statement (or

series of statements) for execution out of a set of statements. The emphasis
in REVS 1is on clear, not clever, programming.

117

FORTRAN Implementation

FORTRAN 77 does support structured programming, but few comp11ers are
currentTy available.

FORTRAN IV (1966 standard) does not support structured programm1ng, but
‘structured FORTRAN Preprocessors are available for use. :

| ‘ : : .
Therefore, without using FORTRAN 77, or a preprocessor, the conversidn'of
Pascal structured programming constructs into FORTRAN IV equivalent constructs
would require heavy use of statement labels and GOTOs which are currently rarely
used. A FORTRAN 1mp1ementat1on woqu be a step backwards.

COBOL ImpTemenat1on

| . -
COBOL does provide the basic constructs used in structured programmlng,
except for the CASE statement which could be accomp11shed by nested IFs~ :

JOVIAL J73/ADA Imp]ementat1on

Both of these languages support the structured_programming’technjques ‘
currently used in REVS.

9.2.5 Data Structures

When a software designer uses a higher order language to solve a problem,
he musit first decide on a way to represent or encode the problem data in terms
of the data structures provided by the Tanguage. The Pascal data structures
utilized within REVS are:

@ Simple variables _
@ Multi-dimensional homogeneous structures
@ Multi-dimensional heterogeneous structures
Pascal constructs allow each item of a structure to have a self-documenting

descriptive identifier to help avoid misunderstandings about sophisticated
complex structures during program life-cycle maintenance.

FORTRAN Implementation

FORTRAN does not support heterogeneous structures. A conversion to
FORTRAN would require all such structures to be redesigned in terms of basic
homogeneous arrays. Such a step would detract from the code{s readability.:

COBOL/JOVIAL J73/ADA Implementation =

Fach 6f'these candidate languages provide the data structures necesSary
to adequately represent the current REVS design.

118

9.2.6 Automatic Consistency Checking

Pascal requires that all data items be explicitly declared and associated
with a specific data type (integer, real, character, etc.). In addition, a
range of values that the specified data type can take on can be specified.
For example, an integer variable count is declared to have a sub-range of
integer values 0 through 9. During compilation, if an assignment statement is-
detected setting COUNT to anything other than O through 9, it is flagged as an
error (attempt to assign an out-of-range value). However, if the value of the
"integer type" variable TEST is assigned to COUNT, this statement cannot be
analyzed for correctness until run-time (the value of TEST is unknown at com-
pile time). During program execution, Pascal will optionally check all ‘
assignment statements for correctness. This run-time consistency checking is
performed whenever REVS is run in the Pascal "debug mode" (which is the normal
configuration). . .

None of the candidate languages provide run-time consistency checking,
but ADA.and JOVIAL J73 do provide compile time type checking. In order to
maintain run-time checking (range checking) if REVS were to be converted, in-
Tine code would have to be added to perform the checks. This would be
expensive in terms of the additional execution time required-to perform the
test, and the space required to store the extra code. Without range checking,
whether implemented automatically by the language compiler or manually by the
software designer, a process critical parameter could be assigned a value
which, when utilized, could produce unpredictable results. Therefore, a cost-
effective approach would be to provide run-time consistency- checking for only
those items identified to be operationally critical.

9.2.7 Input/Qutput

, REVS utilizes both Pascal built-in procedures and FORTRAN routines to

- perform Input/Output to and from external ‘storage devices (disk files, mag-
netic tape, cards, and interactive terminal). . The Pascal procedures are used
to read/write from a device sequentially, while the FORTRAN I/O routines are
used whenever random access is required. All the candidate languages provide
built-in I/0 procedures, with one exception. JOVIAL J73 does not, but does
~ support the calling of FORTRAN I/0 routines.

9.2.8 Automatic Generation of RSL Translator

The RSL Translation function, within REVS, provides the mechanism to add,
modify, or delete information currently stored in the ASSM. The RSL trans-
. lator is written in Pascal with relevant portions generated automatically by
. the Lecarme-Bochmann Compiler Writing System (L-B CWS).

The RSL translator can be thought of as operating in two phases; the A
analysis of the input source text and the synthesis jof the object text. The
analysis phase consists of the decomposition of the source text into its basic
parts. The synthesis phase consists of the construction of equivalent object
. program parts from these basic parts. The analysis phase normally builds
tables which are used in both analysis and synthesis operations. In terms of
RSL translation, the ASSM serves as one large table containing the accumulated
information both from this translation execution and prior translation executions.

- 119

Conceptually, the translator performs four functions distributed over the
analysis and synthesis phases. These functions are lexical analysis, syntax
analysis, semantic analysis, and error handling. There is a considerable
- degree of interaction between these functions. In particular, the syntax
analyzer can access any of the other three functions and the error hand11ng

function may be accessed by-any of the other three functions.

rhe 1ex1ca1 analyzer or scanner is the simplest part of the translator.
[ts function is to scan the characters of the source text from Teft to right
and build the actual symbols of the data base. These symbols include identi-
fiers, key words, and single or multiple character punctuation marks. -These
symbols are variously referred to as lexical or syntactic units, tokens, or
atoms. In terms of RSL, these units are divided into punctuation marks, words,
numbers, and text strings. The symbols are passed on to the syntax analyzer,
usually in the form of integers or other fixed-Tength symbols rather .than
variabTe length strings of characters.

The syntax analyzer or parser performs the more difficult -task of
determining how the syntactic units received from the lexical analyzer can be
grouped together to form the hierarchical structure, called the derivation
tree, which indicates how the source text decomposes into the rules of the
grammar defining the Tanguage.

The semantic analyzer associates a meaning with the derived hierarchical
‘Structure. It checks the $tructure for semantic correctness and stores-
necessary information about the structure in the symbol table, which for REVS
is the ASSM. .

This- orderly scheme of lexical, syntax, and semantic analysis is adequate,
however, only if the source text contains no errors. In practical applications,
" the source text can be expected to very often contain errors which must be
recognized and treated by the translator. These errors can be either lexical,
syntactic, or semantic in nature; requiring a general error handling function
access1b1e from these three analyzers.

Lecarme-Bochmann Compiler Writing System

The Lecarme-Bochmann Compiler Writing System (L-B CWS), deve]oped at the
University of Montreal, accepts as input an integrated description of a ‘
language (RSL) and produces as output a translator for that language.

" There are several advantages to use of a syntax—directed-CWS:

@ It is readily responsive to changes in the design of the :
1anguage whether to accommodate changes in user's needs,
or in order to achieve internal cons1stency

o Use of meta11ngu1st1c descr1pt1on as input to the CWS assures
that the Tanguage intended by the des1gners is actua]]y
implemented.

e A compiler or translator wr1tten with a good CWS is vastly -
‘ simpler to code and debuq, therefore reducing ma1ntenance
costs. ' _

120

The RSL Translator's lexical and syntax analyzer functions are -currently -
generated using the Lecarme-Bochmann CWS. Therefore, if REVS were to be con-
verted, the CWS could have to be redesigned in order to produce the RSL
translator's lexical and syntax analyzers in the candidate language. Since
ADA and JOVIAL J73 are similar to Pascal with respect to the following:

@ Block-Structured language
@ Strongly typed lanauage

® Recursion
the redesign would not be as extensive as a FORTRAN or COBOL implementation.

9.2.9 Automatic Generation of Simulator Program

The automatic simulator generation capability in REVS takes the ASSM
representation of software requirements and generates a discrete event, closed-
loop simulator written in Pascal. The simulator functional components are
shown in Figure 9-1. ‘

The REVS simulator generator (SIMGEN) transforms the ASSM representation
of software requirements into "simulator models" in the Pascal language. Pro-
cessing flow through the simulated software system is specified in the ASSM
as requirements networks, also called R NETs. Each R NET identifies an -
ordered sequence of processing steps (ALPHAs) to be performed by the software
system. The REVS simulator generator produces a Pascal procedure for each
R NET to be simulated. Each processing step (ALPHA) referenced on the R NET
becomes a call to a user-supplied model of the process (BETA or GAMMA), stored
as an attribute of the ALPHA. : ‘ ’

Two distinct types of simulators may be generated by REVS. The first is
a simulator which uses "functional models (BETAs)" of the processing steps
(ALPHAs) to be performed by the subject system. This type of simulation
serves as a means to validate the overall required flow of processing against
higher level system requirements. The other type of simulator uses analytic
models (GAMMAs), i.e., models that use-actual algorithms similar to those
which will appear in the actual software to perform complex computations.

'These models/algorithms are written by the REVS user in Pascal and RSL
statements and entered into the ASSM as textual attributes of the ALPHAs. The
RSL statements provide the BETAs and GAMMAs with data file manipulation cap--
abilities which augment the Pascal language. During simulator generation, the
RSL statements, identified by scanning the BETA or GAMMA text for RSL keywords,
are translated into Pascal statements necessary to accomplish the specified
RSL operation. The RSL keywords recognized by SIMGEN are -as follows:

@ CREATE - The CREATE statement adds a Aew record to a file.

@ SELECT - The SELECT statement is used to make available to the
~ BETA or GAMMA the contents of one record (instance)
“in a file.

121

2zl

TRW81-100

SIMULATOR PROGRAM

- SIMULATION INITIALIZATION

!

SIMULATION EXECUTIVE

SETS

SUBSYSTEM,

‘MODEL PROCEDURES

SUBSYSTEM,,

MODEL PROCEDURES

)

* EVENT CALENDAR

(EVENTDESCRIP-]
TIONS ,

*JSER RUN-TIME INPUTS

| VALIDATION |
N _DATA

R_NET PROCEDURES
[sImuLATION EVENT N RRE
— MANAGEMENT e——1 |*T] oo o o
a STHULATION BRI
5| DATA MANAGEMENT || = ™ {%q ar]oeo
T _— ggzim[;_, T:E:;fﬁ, |
- REVS
SIMGEN

Figure 9-1 Simulator Program Overview

@ DESTROY - The DESTROY statement removes the currently
' selected record from a file.

& FOR EACH - The FOR EACH statement is an iterative form of the
SELECT statement. It allows a simple means of
applying common operations to mu1t1p1e records in
a file.

These RSL statement keywords,'as well as any new keywords which might be
defined, must not conflict with the REVS implementation language reserved
words.

The data definitions and structures used by the simulator are synthesized
from the required data elements, their relationships, and their attributes 1in
the ASSM. The Pascal code generated from the ASSM is automatically combined
with externally generated simulation support routines (executive, event calen-
dar, event manager, data managers, etc.), and a System Environment and Threat
Simulator (SETS), a generic name assigned to the driver, is developed external
to REVS in Pascal. Each external subsystem referenced by the software require-
ments is modeled within the driver. The simulation support routines are as
follows:

e Simulation Executive - The Simulation Executive controls the
sequence of execution of R NET and external subsystem models.
The execution sequence is determined by the order of events on
the event calendar. Code is generated by SIMGEN such that the
required models can be invoked during simulation.

® Fvent Calendar - The event calendar is a time-ordered linked
- Tist of events (execution of R NET or external subsystem
models) to be executed.

® Simulation Event Manager - The Simulation Event Manager provides
the utilities necessary to correctly maintain the event calendar.

@ Simulation Data Manager - The Simulation Data Manager supports
requests for data from. both the simulation driver. subsystem
models and the software requirements models. SIMGEN produces
the source code necessary to access the data structures con-
structed from the ASSM data definitions.

Finally, the various parts (SIMGEN generated code and externally generated
code and externally generated code).are compiled and linked producing an
executable simulator. A REVS Executive utility (written in host system
assembly language) is called to invoke the compiler and linkage editor to
generate the load module. Further details of the simulation construction
software and the complex stream of job steps invoked are discussed in
Paragraph 2.2.4. 1

If REVS were to be converted to one of the candidate Tanguages, the
SIMGEN software would .have to.be redesigned to produce code in the candidate
language. Also, the externa\\y generated components, for example SETS, would
have to be deve]oped in the new language. Since ADA and JOVIAL J73 are
similar to the current REVS 1mp1ementat1on Tanguage with respect to the
following:

123

] B]ock-Structuréd language
@ Strongly typed langquage
e Support of recursive algorithms

the redesign would not be as extensive as a FORTRAN implementation. A COBOL
implementation would not be feasible because COBOL is very limited and awkward
with respect to arithmetic capabilities necessary to support simulations for

C3 and weapon system probiems. However, the REVS SELECT construct would not

be allowed in ADA because it is a reserved keyword with an entirely different
ADA meaning. A new RSL keyword, such as CHOOSE, would be necessary, thus
altering the current RSL baseline definition. This change would require up-
dates to all user manual, methodology manual, and training manual documentation,
as well as changes to the REVS software.

9.2.10 Autométit Generation of Simulation Post-Processor

When generating an analytic simulator (discussed in Section 9.2.9), REVS
also; automatically generates a simulation post-processor for use in evaluating
the performance requirements to be met by the specified software. The ASSM
representation of each requirement has an attribute, TEST, which is used by
the software specifications engineer to define an executable test module. In
order to generate the data/information to be processed by this user-defined
TEST module, VALIDATION POINTs are defined at various points in the software
requirements networks. Each time during simulation that the processing flow
reaches a VALIDATION POINT, data/information are transferred to a recording
system which records the relevant information for post-simulation analysis.
During post-processing, an executable TEST module can then determine whether
accuracy and timing performance requ1rements have been sat1sf1ed by the
software. K

A TEST is written in standard Pascal and RSL statements and entered into
the ASSM as textual attributes of a specific software performance requirement.
The RSL statements are used to access validation point data/information, and
are translated by SIMGEN into Tegal Pascal code. Since these special state-
ments are similar to those utilized in BETAs and GAMMAs, their description and
conversion considerations are not repeated in this d1scuss1on (see Section
9.2.9). ~

The Pascal code generated for a TEST is automatically comblned with
externally generated post-processor suDDort routines: :

e Simulator Post—Processor Executive
@ Simulator Post-Processor Initialization

® Simulator Post-Processor Data Manager
for post-processor execution outside the control of REVS.

The Tanguagé conversion considérations are the same as those presented
in Section 9.2.9 (Automatic Generation of Simulator Program).

124

9.3 CONVERSION COST/SCHEDULE

The cost associated with the conversion of REVS Pascal code into each of
the candidate 1anguaoes 1s a funct1on of the fo]]ow1ng

e How much ex1st1ng code can be utilized without change?

-8 _ How much existing code must be rewritten because of 1anguaae
- syntax and semantic differences?

"o How much ex1st1no code must be redes1gned betause the candidate
language does not adequately support a REVS feature/capability?

Variations among the candidate languages in syntactic structures (sym-
bolic notation) will necessitate the rewriting of REVS code in the correct
symbolic notation. The underlying meaning (semant1cs) will usually be the
same even though the symbolic notation is different.. For example, FORTRAM and
JOVIAL use the symbo] '=' while Pascal and ADA use ':=''to represent an assign-
ment operation. The types of syntax chanqes requ1red if REVS is converted are
as follows: o

o - Identifiers (length restrictions, type of characters).
® Operator symbols. '

® Keywords and reserved words (des1qnate statement type
delimiters within statements).. :

'y Comments and no1se,words..
"e@ Blanks.
e Delimiters.

No matter which language is selected, nearly every one of the 47,530 Pascal
statements will have to be rewritten. This task can be simple where a one-to-
one correspondence between language constructs exists, rather than an absence

of or significant variation of a construct in the target lancugoe.. Close
correspondence makes construction of an automated language-to- Tanguage trans-
lator a cost-effective approach to conversion. Of the four candidate languages,
ADA rates first with respect to syntax s1m11ar1ty with Pasca1 followed by
JOVIAL, FORTRAN, then COBOL. ' _

When programming in a 1anguage that does not provide a desired feature
directly, the programmer necessarily must provide his own implementation
utilizing the primitive elements provided by the language. In the previous
section (9.2), the features and capabilities of REVS which are dependent,
either directly or indirectly, upon the current implementation Tanguage,
Pascal, were presented with a discussion of the adequacy of each candidate
1anquage to support those features. ‘Table 9.1 pnesents a rating (maximum
score of forty-four) of how well each candidate language supports ‘the existing
features. The Tower the rating, the greater the redesign -necessary. A zero
indicates that the feature is not provided by the Tanguage, requiring the
desian of an alternate solution. The results of the evaluation indicate the
Towest amount of redesign if existing REVS code were converted to ADA.

125

Table 9.1 Candidate Language Comparisons

c | J FORTRAN TV | ..
B SRR | e | w |y | e
- MODULAR ARCHITECTURE 4 4 4 0
STATICALLY NESTED PROCEDURES 4. 4 0 0
DYNAMIC STORAGE MANAGEMENT 3 2 0 0
RECURSIVE ALGORITHMS 4 4 0 0
PARAMETER PASSING 4 4 4 0
DATA TYPING 4 4 0 0
"INPUT/OUTPUT 4 - 2 4 4
DATA STRUCTURES -4 4 2 4
~ " STRUCTURED PROGRAMMING CONSTRUCTS . 4 4 . 0 3
| LANGUAGE SYNTAX SIMILARITY 3 2 . 0
'S| AUTOMATIC RANGE CHECKING 3 3 0 0
§ TOTALS 41 37 15 n
E . .

This conclusion -is supported by an independent study sponsored by the
Air Force Avionics Laboratory under Contract F33615-78-C-1466. The results
(”DoD s ADA Compared to Present Military Standard HOLs, A Look At New Capabili-
ties") were presented at the 1980 National Avionics and Electronics Conference
(NAECOM), by Systems Consultants, Inc. [11]. ADA, rated first, scored 373
points out of a possible 394 points. JOVIAL J73 was second with 290 points
followed by FORTRAN at 177. (COBOL was not evaluated in that survey. However,
the Navy CMS=2 language, with 210 po1nts, scored ahead of FORTRAN, re]eqat1nq
FORTRAN to last p]ace) _

Fhe k1nds of software tools needed to trans1ate REVS Pasca] code 1nto one
of the- cand1date languages are as follows:
® Interact1ve Text Ed1tor . oL
¢ Candidate language compiler for the host mach1ne

e Program to 1dent1fy alil potent1a1]y recurs1ve subproqrams
(available in-house at TRW). ‘

© Program to 1dent1fy static nest1nq of subproqrams : :
- (avaiTable in-house at TRW). S

° Program to automat1ca11y replace specific Pascal symbolic.
notation with that of the candidate language. This will be
possible where a one-to-one mapp1nq between 1anquage constructs
exists (must.be developed).

\ As-an example of automat1c translation potential, the Pascal WHILE state-
ment : : ' ' ' '

126

WHILE NUMBER > 0 DO
BEGIN

SUM:=Sum" +_ Number;
~ NUMBER:=Number - 1;

"END;
can be automatically translated into the fo11ow1ng ADA Statement_
WHILE NUMBER > O LOOP |

SUM:=Sum + Number;
NUMBER :=Number - 1;

END LOOP;
The estimated effort to accomplish the conversion of 47;530 Pascal state-

ments into each of the candidate languages, develop/modify required documentation,
and perform validation testing is as follows:

LANGUAGE ESTIMATED MANMONTHS ~ ESTIMATED SCHEDULE (MONTHS)

CADA o8 15
JOVIAL J73 - 145 ST I

- FORTRAN . 280 = 2
cogoL. . 394 o 36

It can be seen thdt converting REVS to a similar type language like ADA, re-
quiring a minimum amount of redesign, is the most cost-effective approach.

~ These estimates were validated with TRW's Software Cost Estimating Program
(SCEP). They represent technical/engineering effort and do not include
management/secretarial support costs. : '

9.4 CONVERSION IMPACT UPON LIFE-CYCLE MAINTENANCE

Software life-cycle maintenance costs are influenced primarily by the
following: o

‘e Understanding the existing software. This implies the need
for good documentation, good traceability between requirements
and code, and well-structured and reada?]e code. '

@ Modifying the existing software. This implies the need for
modular software which minimizes the side effects of changes
to code or data structures.

e Revalidating the modified software. This implies the need for
software structures which facilitate selective retest, a

127

standard set of validation tests, and a1ds for making retest
more thorough and efficient.

It would not be cost effective to rewrite REVS in one of the interim
HOLs. First, the current Pascal implementation.of REVS exists at five sites
within the DoD community. Enhancements made at the various sites can now be
easily shared by all, reducing the total DoD REVS maintenance cost. Second,
since ADA, the proposed DoD standard HOL, is a Pascal-like language, it would
be very cost-effective to install the Pascal version in the STE until suffi-
cient reliable ADA compilers are available within the DoD community. This
interim period could be utilized by STE personnel to become familiar with the
existing features/capabilities, and those enhancements made at other sites for
possible inclusion in the eventual ADA version.

A caveat should be noted here about the use of-a HOL for requirements
specification that is the same as the eventual implementation language. While
there. are human engineering benefits, -in that the user need not be familiar
‘with two languages, there is a areater danger. Namely, that of developing a
design, and imposing it as a set of reauirements. Description of requirements
. using.Pascal as- a base.language has the advantage of separat1nc requ1rements
def1n1t1on from design of the operat1ona1 software :

9.5 LANGUAGE CONVERSION CONCLUSIONS
- The purpose of this study was to evaluate the feasibility of rewriting
REVS, currently implemented in Pascal, in one of the DoD approved HOLs. The
results of our evaluation indicate that the most cost-effective conversion
would be to ADA. JOVIAL J73 would be second.choice. In view of the future
trends #n programming languages over the next ten years, conversion to
FORTRAN or COBOL would be a costly step backward. The trend in the micro-
processor/personal computer community is toward Pascal instead of the older
traditional languages, such as FORTRAN. Because of Pascal's increasing popu-
lTarity, its similarity to ADA, and since other DoD installations are using
the Pascal version of REVS, we recommend a Pascal version for the STE. until
-d proven-ADA compiler is ava11ab1e A J73 implementation is possible, but
iits ‘use and support would be limited primarily to the Air Force.. This would
deny the Air Force direct incorporation of REVS_ﬁmprovements_made on behalf
of other DoD sponsors. A decision on an ADA or J73 implementation should be
suspended until the future of both Tanguages becomes more clear.

128

10.0 REFERENCES

"REVS User's Manual - Revisioh B" TRW Report 27332—6921—026, 28 June 1979.

"REVS-Maintenance Manual:- Revision B" TRW Report 27332-6921- 026 28 June
1979.

R1chard§ K. C. and J. C. R1chardson,-”PERCAM Post- processor User's Manual",
TRW Report 28375-6921- OO] November 1975.

Callaway, L. S., R. C. McCoy, et al, "Air Defense Syétems'ﬁerformance
Analysis Final Report, Volume.2: . PERCAM.User's,Manua1", TRW Report
30749-6921-001, 26 October 1977. ' :

Lamb, S., et al, “Computer Program Deve]opment Spec1f1cat1on for IDEF
Support Tools (BUILD 1).", Boéing Computer Serv1ces Co. Report BCS- 40254
(Revised), 1 April 1979. o

"Computer Program Product Specification for IDEFvsupport Tools (BUILD 1)",
Boeing Computer Services Co. Report BCS-40260, 13 July 1979.

7. -‘Boeing Computer Services. Co. , "ICAM Computer Program Deve]opment Spec1—

fication for AUTOIDEF (1. 5)”, 30. May 1980..

Shne%derman, B., “Human Factors Exper1ments in Des1gn1ng Interactive
Systems", IEEE Computer Society Computer Magazine, Vol. 12, No. 12, pp.
9-19 (December 1979).

Yates, E. H., "Interrelationships of TechnoTogy, System.Performance and
Prices for Mini/Midicomputers", General Research Corp., (Huntsville, AL)
Report TIO 2286, August 1980.

Cottrell, J., C. Shu and G. Short, "Multi-Level Security for Intelligence
Data Processing Systems", TRW Final Technical Report for Contract F30603-
77-C-0119, 30 September 1978

Scheer, L. S., and M. G. McClimens, "DoD's ADA Compared to Present

Military Standard HOLs, A Look at New Capabilities", IEEE Reprint
CH1554-5-1/80/0000-0539$00.75.

129

APPENDIX A

ARPANET HOST
HARDWARE /SOFTWARE ENVIRONMENT DATA

ARPANET HOST: "Air Force Weapons Laboratory, Kirtland Air Force Base
ACRONYM: AFWL 4 _ E
LIAISONS: NAME , ARPANET ADDRESS PHONE NO.

Roy Maull afwl@id-tenex : (505) 844-2581
MACHINE MAKE/MODEL: CDC Cyber-176, 730, 6600 o
OPERATING SYSTEM: NOS/BE

PRIMARY STORAGE: 1 megabyté each (Cyber 176 has some “fast d1sk“ ECS)
SECONDARY STORAGE: Many 844s, many 814s :
GRAPHICS/PLOTTER HARDWARE (adequate software support)

_ Tektronix 4014, FR80 and Calcomp support. - No color raster support
COMMUNICATIONS LINES:]O dial-up, many ded1cated 11nes

PASCAL -COMPILERS: Unknown
FORTRAN COMPILERS: "Unknown

STATUS/COMMENTS: _
Liaison knows 1ittle about AFWL user services and operations. He could
recommend no other contacts. Presumably Pascal and FORTRAN compilers
are available accord1ng to operations personnel at Eg]1n A1r Force Base
but their or1g1ns and extens1ons are undeterm1ned :

130

ARPANET HOST: Argonne National Laboratory, Argonne, 111.°

ACRONYM: ANL -

LTAISONS: NAME ARPANET ADDRESS - PHONE NO:

' ’ ‘Lawrence Amiot amiot@BBN-TENEX ' (312) 972-5432
MACHINE MAKE/MODEL: 1 IBM 370/195, 2 IBM 3033's '
OPERATING SYSTEM: OQOS-MVT, OS-MVT-TSO, VM370

PRIMARY STORAGE: 4MB (370) 6MB (3033's)

SECONDARY STORAGE: '

NO. DISKS CAPACITY . MAKE - | " MODEL
32 » 317.5 MB~ CITELT 7330-12
14 200 MB ITEL - © 7330-11
44 100 MB ITEL 7330-1
14 - 100 M8 - IBM ‘ 3330
24 29 MB IBM S 2314

GRAPHICS/PLOTTER HARDWARE - (adequate software support)
Tektronix 4014, plans for 4027
Calcomp, Versatek plotters

COMMUNICATIONS .LINES: numerous Telnet Tines <=1200 baud

"PASCAL COMPILERS: not currently supported.
FORTRAN COMPILERS: more than adequate.

STATUS/COMMENTS:

ANL is willing to upgrade Telnet lines to med1um term ("5 year") user's
requ1rements ‘
Will acquire IBM Pascal as per user requirements.

131

ARPANET HOST: Brookhaven National Laboratory, Applied Math. Dept;-,
ACRONYM: BNL '

LIAISONS: NAME ARPANET ADDRESS PHONE NO. o
- Graham Campbell . gcampbell@bbn-tenexb . (516) 345- 4168
MACHINE MAKE/MODEL: 2 CDC 6600s, 1 CDC 7600 L

OPERATING SYSTEM: SCOPE 3.4 :

PRIMARY STORAGE: .9 megabytes + 8 megabytes of ECS on 6600a, -
.5 megabytes small core + 4 megabytes ECS on 6600b.
.5 megabytes small core + 4 megabytes large-core -on 7600
SECONDARY STORAGE: 1.44 gigabytes on 6600a, 972 megabytes on 6600b,
2.2 gigabytes on 7600.
GRAPHICS/PLOTTER HARDWARE (adequate software support):
Tektronix 4027 and CALCOMP software support. .
COMMUNICATIONS LINES: ‘'"many dial-up connect1ons, 2 1200 baud 11nes,;3__
Arpanet dedicated Tines. . . .

PASCAL COMPILERS: University of wash1ngton
‘FORTRAN COMPILERS: Standard CDC version 4.5.

STATUS/COMMENTS:

1132

ARPANET HOST: Computer Corp. of America, Cambridge, Mass. °
ACRONYM: CCA _ _ ‘ ' o
LIAISONS: NAME "~ ARPANET ADDRESS _ PHONE NO.

- Don Eastlake - dee®CCA - o (617) 491-3670
MACHINE MAKE/MODEL: DEC VAX-11/780 o ' - SR s
OPERATING SYSTEM: Paging Unix Berkeley version 32

PRIMARY STORAGE: 3.75M
SECONDARY STORAGE: 2 RM03's, 4 300MB dr1ves o :
GRAPHICS/PLOTTER HADWARE (adequate software support): ’
3 AED-512 c¢olor raster displays. Input: touch, Joyst1ck mouse
Houston Instr. plotter :0" flatbed. Calcomp compatible dial-in/
dial-out e o -
COMMUNICATIONS LINES: 6 dial-up lines, some TELNET Tlines,
Virtual terminal file-transfer "Tine" capability -

PASCAL COMPILERS: released with Unix tapes.
FORTRAN COMPILERS: released with Unix tapes.

STATUS/COMMENTS: ‘ -
Not on net yet. Plan to be in near future. ‘ -
The AED-512 device is comparable to a RAMTEK color raster device

(512x512 pixels, high-speed D operations)

The Unix-released Pascal compiler is a pseudo-code generator,
which is inadequate to RSL/REVS requirements. A version of NBS
Pascal which is partially adequate is being upgraded for release
to Unix environments in the new future. .

- 133

ARPANET HOST: David Taylor Naval Ship Research and Development Center
ACRONYM: . DTNSRDC e
LIAISONS: - NAME ARPANET ADDRESS PHONE NO..-

- Robert Tinker - dtnsrdc@usc-isie _ - (212) 227-1428
MACHINE MAKE/MODEL: CDC 6400, 6600 S :
OPERATING SYSTEM: NOS/BE

PRIMARY STORAGE: .9 megabytes on each machine L
SECONDARY STORAGE: 1.1 gigabytes (6400), 3.3 gigabytes (6600) -
GRAPHICS/PLOTTER HARDWARE (adequate software support):

. Support for CALCOMP plotters and Tektronix 4027 color raster: d1sp1ays
COMMUNICATIONS LINES: 4. 300 baud TELNET Tines, _

} 10 300 baud dialup TTY compatible.

PASCAL COMPILERS: University of Minnesota. o
‘ FORFRAN COMPILERS: Standard CDC revision 4.7, level 45,

STATUS/COMMENTS
~ DTNSRDC would require a hardware upgrade of 1ts TELNET 11nes to support

. the minimum requirement of 4800+ baud communications over.the ARPANET
+ for interactive graphics support..

134

ARPANET HOST: Air Force Armament Division, Eglin Air Force Base
ACRONYM:. EGLIN : . : '
LIAISONS: :NAME ARPANET ADDRESS L ~ PHONE NO.

' ‘Herbert Spies spies@bbn-tenex . (904) 882-4267
MACHINE MAKE/MODEL: CDC 6600, Cyber.176 ' o , -
OPERATING SYSTEM: NOS/BE

PRIMARY STORAGE: .9 megabytes (6600, 1.8 megabytes (Cyber 176)"
SECONDARY STORAGE: 4.14 gigabytes. . ' o
GRAPHICS/PLOTTER HARDWARE (adequate software support): :
Tektronix 4014 and CALCOMP plotter software support. FR80
support. S
COMMUNICATIONS LINES: 1?2?2227

PASCAL COMPILERS: - 222?? : S
FORTRAN COMPILERS: FORTRAN '66, version 4.7, revision level 45.

STATUS/COMMENTS:

135

ARPANET HOST: Navy Fleet Numerical Oceanography Center. o
ACRONYM: FNWC B o ' : o .
LIAISONS: NAME : ARPANET ADDRESS PHONE NO. .

" Brian Bradford fnwcBusc-isie (408) 646-2201
MACHINE MAKE/MODEL : CDC 6500 . o o
- OPERATING SYSTEM: SCOPE

PRIMARY STORAGE: 9 megabytes + 7 megabytes ECS

SECONDARY STORAGE: * 4.8+ gigabytes. ' Lo

GRAPHICS/PLOTTER HARDWARE (adequate software support) ‘
Tektronix 4014 .and VERSATEK p]otter support No color raster support.’

COMMUNICATIONS LINES: 2227?72 '

PASCAL FOMPILERS: none.
FORTRAN COMPILERS: Standard CDC FORTRAN extended to version 4 5

STATUS/COMMENTS

Inadequate Tanguage and graphics hardware support. FNWC 1s an ARPANET
user and cannot be accessed over the net as a server.

136

ARPANET HOST: MIT Lincoln Laboratory

ACRONYM: LL '
LIAISONS: - NAME - - ARPANET ADDRESS
- - Edward Haines . ha1nes@LL

MACHINE MAKE/MODEL: Ahmdah1 470/V7
OPERATING SYSTEM: VM370, VS370

PRIMARY STORAGE: 8 megabytes.
SECONDARY STORAGE: 5.4 gigabytes.

GRAPHICS/PLOTTER HARDWARE (adequate software support):

Tektronix 4014, 4015 L
Ramtek color raster terminals 4- 5 of them -
COMMUNICATIONS LINES: 8 Telnet lines.

PASCAL COMPILERS: Acquiring IBM Pascal
FORTRAN COMPILERS: more than adequate.

STATUS/COMMENTS :

137

PHONE NO.

(617) 862-5500
x7177

ARPANET HOST: Massachusetts Institute of Téchnology
ACRONYM: . MIT-MULTICS S SR
- LIAISONS: ' NAME " ARPANET" ADDRESS A PHONE NO
R Richard Scott © scott@MIT- MULTICS S T LU(B17) 253 7020
MACHINE MAKE/MODEL: HONEYWELL H-6180
OPERATING SYSTEM: MULTICS

PRIMARY STORAGE: 2.56M

SECONDARY STORAGE: approx. 380M ' AR

GRAPHICS/PLOTTER HARDWARE (adequate software support):
Tektroni 4027 - T T e e R

i Calcomp (905 dev1ce) ' ' S

COMMUNICATIONS LINES: "> >7 for both 1nteract1ve and FTP

PASCAL COMPILERS: University of Ca]gary N L
FORFRAN COMPILERS: MULTICS-FORTRAN. - Upgraded to '77 next yedr. "

%STAIUS/COMMENTS

University of Ca1gahy Pascal, aka PYXIS, may not be adequate to" the
requirements of RSL/REVS translation.

138

ARPANET HOST: Naval Air Development Center.,

ACRONYM: . NADC _ o o

LIAISONS: NAME - ARPANET ADDRESS PHONE NO.
a Ted Calkins nadc@usc-isie : . (215) 441- 2474

MACHINE MAKE/MODEL: 2 CDC 6600s, Cyber 175, Cyber 760 ‘

OPERATING SYSTEM: KRONOS/NOS

PRIMARY STORAGE: .9 megabytes (66005), 2 megabytes-(CyberS)

SECONDARY STORAGE: 9.66 gigabytes for user files.

GRAPHICS/PLOTTER HARDWARE (adequate software support): .
Tektronix 4027 and CALCOMP support.

COMMUNICATIONS LINES 227

PASCAL COMPILERS. University of Minnesota versions 2.0 and 3.0.
FORTRAN COMPILERS: Versions 3 and 4 standard CDC releases.

STATUS/COMMENTS:

The STE has been insta]]ed if not fu]]y integrated at NADC '
except for AUTOIDEF

139

ARPANET HOST: Naval Ocean Systems Center ;
.ACRONYM: NOSC-CC L _

LIAISONS:- NAME’ “ARPANET" ADDRESS PHONE NO 4
o Charles Messinger messinger@NOSC-CC - . (714) 225 2168
'MACHINE MAKE/MODEL: Univac 1100/82 (250nsec./instr.) R e
OPERATING SYSTEM: Standard Univac- 1100 Operating System :

PRIMARY STORAGE: 8 megabytes: -~ - -
SECONDARY STORAGE: 2 8450 drums, 12~ 8433 d1sks . . STt
" GRAPHICS/PLOTTER HARDWARE (adequate software: support):. =
Tektronix 4013,4024 S
Zeta Plotter 30"max. drum (Calcomp comp. software) . . -
COMMUNICATIONS LINES: 4 comm. ports now, >20 in next 1-1.5 years

PASCAL COMPILERS: Mlke Ba]] S NOSC Pasca] :
FORTRAN COMPILERS: ASCI FORTRAN level 9 revision 1

STATUS/COMMENTS: ™

140

ARPANET HOST: Naval Serv1ce Weapons Center, Dah]gran, V1rg1n1a

ACRONYM: NSWC-DL .

LIAISONS: NAME ARPANET.ADDRESS ' PHONE NO.
 Eugene Stemple ° nswc-d1@usc-isie (703) 663-8788

MACHINE MAKE/MODEL: CDC 6700 ' c . A

OPERATING SYSTEM: SCOPE 3.4

PRIMARY STORAGE: .9 megabytes

SECONDARY STORAGE: 3.32 gigabytes. -

GRAPHICS/PLOTTER HARDWARE (adequate software support) S
DISPLA, TEKVIEW support for CALCOMP. Previewing on Tektronix- devices.

COMMUNICATIONS LINES: 250Kbyte/sec. channel supporting-16 virtual TTY
TELNET connections or <= 4 FTP connections (1 FTP =4 TTY virtual
connections).

PASCAL COMPILERS: Winograd, University of Colorado. .
FORTRAN COMPILERS: FORTRAN '66, version 4.6, level 433

 STATUS/COMMENTS:

147

ARPANET HOST: Navai Surface Weapons Center. White Oak

ACRONYM: NSWC-WO

LIAISONS NAME ARPANET ADDRESS
L "Robert Archer nswclusc-isie

MACHINE MAKE/MODEL: CDC 6500

OPERATING SYSTEM: "NOS.

PRIMARY STORAGE: .9 megabytes.
SECONDARY STORAGE: 2.2.gigabytes.

GRAPHICS/PLOTTER HARDWARE {adequate software Support):

CALCOMP and Tektronix 4027 support
COMMUNICATIONS LINES: 722?277 .

PHONE NO.

- (202) 394-1909,

PASCAL COMPILERS: University of Massachusetts version 2.0 in usefr 11brary

FORTRAN COMPILERS: Standard CDC vers1on 4.7 rev1s1on level 45..

| .
STATDS/COMMENTS:

142

ARPANET HOST: Naval Underwater Systems Center, New London, Conn.
ACRONYM: NUSC e S
LIAISONS: NAME : ~ ARPANET ADDRESS PHONE NO..

: - Don Quiqley dquigley@NUSC- NPT : : (203) 447-4349
MACHINE MAKE/MODEL: DEC VAX-11/780 : ' s 3
OPERATING SYSTEM: ELF (Arpanet Interface), VMS. (host) version 1.6

PRIMARY STORAGE: 1 megabyte

SECONDARY STORAGE: 4 RP0O6's for 2 drives .

GRAPHICS/PLOTTER HARDWARE (adequate software support) , S
Tektronix 4014, Calcomp 1055 devices. NUSC is deve]op1ng in-house
device-independent graphics package. -

COMMUNICATIONS LINES: 19600 baud Server Te]net 11ne

PASCAL COMPILERS: U. of Wash1ngton, i.el, DEC Pascal
FORTRAN COMPILERS: A good FORTRAN '77.

STATUS/COMMENTS: _ . o ;
No FTP support yet. gP]ans to have it soon via ELF interface.

143

1 kN

ARPANET HOST: Naval Weapons Center, China .Lake; .CA - - .
. ACRONYM: NWC : , R S
LIAISONS'” NAME - ARPANET.-ADDRESS ‘PHONE NO..:

' -+ John Zenor 7 nwc@USC-ISIE ' o<+ (714) 939-5559,2
MACHINE MAKE/MODEL: Univac 1100/40 S e '
OPERATING SYSTEM: -‘ELF (Imp interface);.EXEC-8 (host) "

PRIMARY STORAGE: 136K primary, .5M secondary core.

SECONDARY STORAGE: approx. 3G. '

GRAPHICS/PLOTTER HARDWARE - (adequate software support)
Tektronix *-4014, 4027: (DISPLA .software). -
COMP80 microfiche---> plot xerox: photo :

COMMUNICATIONS LINES: a few supporting-4800b commun1cat1ons

PASCAL COMPILERS: Mike Ball's: NOSC compiler. . .
FORTRAN 'COMPILERS: Latest Univac ASCIT Fortran.

STATUS/COMMENTS:

144

- ARPANET HOST: .“Rome A1r Deve]opment Center, Gr1ff1ss AFB -New York
ACRONYM: - RADC MULTICS)
LIAISONS: NAME s ARPANET ADDRESS ' L PHONE NO-.
- . Robert Walker wa1ker@RADC MULTICS .. . - (315) 330-2501
MACHINE MAKE/MODEL: HONEYWELL 6780 L S
OPERATING SYSTEM: MULTICS

- PRIMARY STORAGE: 3 megabytes.
SECONDARY STORAGE: 912 megabytes.
GRAPHICS/PLOTTER HARDWARE (adequate software support) ‘
‘ 2-10 Tektronix 4014's, 1 Intecolor color raster term1na1 (keyed 1nput)
Zeta 36" drum plotter (3 pen holder, micro proc. controller, off- line)
COMMUNICATIONS LINES: 20 entries in- v1rtua1 1nteract1ve terminal 11ne table,
8 FTP. ports. B .

PASCAL COMPILERS: University of Ca]gary, PYXIS.
FORTRAN COMPILERS C]ose to ANSI. Suff1c1ent]y robust

STATUS/COMMENTS _ ‘
University of Calgary "Pasca]" which HONEYWELL P]ans to upgrade release,
and support, especially in MULTICS environments:is the only accessible
‘compiler but it may not be adequate to RSL/REVS requirements.
The Intecolor device has a micro processor controller with dua] f]oppy
" disks and will support 9600 baud commun1cat1on

145

ARPANET HOST: University of Ca11forn1a at Los Angeles , Co
ACRONYM: UCLA-CCN T
LIAISONS: ~NAME. - . ARPANET-ADDRESS] “PHONE NO.-~ -

-« + Robert Braden - - braden@UCLA-CCN Lt (213) 825-7518
MACHINE MAKE/MODEL: IBM 370/3033 6 m1p machine = - TVl e
OPERATING STORAGE: OS/MVT release 21.8, under VM release 6.

PRIMARY STORAGE: 12 megabytes S
SECONDARY STORAGE: 319.5 gigabytes. RN E "
GRAPHICS/PLOTTER HARDWARE (adequate software support)

Ramtek 8100 raster - ° S

Acqu1r1ng 1BM co]or raster havdware , R o
. CALCOMP- S _ ERRUTT
COMMUNTICATIONS LINES: ”100 dialup ASCII ports, 6 leased- 11ne ports (two of
which are high-speed), 6 NETRJS v1rtua1 term1na1 ports for ARPANET

PASCAL COMPILERS: IBM Pascal, Hitachi Pascal, Waterloo Pascal.
FORTRAN COMPILERS: Standard IBM release.

"STATUS/COMMENTS:

Sorme quest1on whether FORFRAN comp11er supports MASK SHIFT ENCODE and
DECODE

46

MISSION
of

Rome Air Development Center

- RADC plans and executes research, development, fest and

selected acquisition programs Lin support of Command, Contrnol
Communications and Tntelligence (C31) activities. Technical
and engineering suppornt within areas of technical competence
s provided to ESD Program Offices (POS) and othen ESD
elements. The piineipal technical mission areas are
communications, electromagnetic guidance and contrnol, sur-
veillance of ground and aerospace obfects, intelligence data
collection and handling, information system technology,
Lonospheric propagation, s0fid state sciences, microwave
physics and electhonic reliability, maintainability and
compatibility.

